

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.8 January - February – 2024

DOI:10.46647/ijetms.2024.v08i01.005 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 34

Comparative Analysis of Embedded Operating

Systems:

A Criteria-Based Evaluation

Sanika More1, Shivam Mukhede2 , Mrs. Minal Deshmukh3
1UG,Electronics and Telecommunication Engineering,BRACT’s Vishwakarma Institute of

Information Technology, Pune, India
2UG,Electronics and Telecommunication Engineering,BRACT’s Vishwakarma Institute of

Information Technology, Pune, India
3Associate Professor,Electronics and Telecommunication Engineering,BRACT’s Vishwakarma

Institute of Information Technology, Pune, India

Corresponding Author Orcid ID: 0009-0007-9227-9940

ABSTRACT

Nowadays, the Internet of Things (IoT) encompasses a wide range of applications, including smart

home systems, healthcare devices, smart parking systems, and smart transportation solutions. For

these types of IoT applications, embedded operating systems play a crucial role by providing

excellent real-time performance and reliability. The important purpose of this system is to efficiently

perform specific tasks. This paper provides a quantitative and qualitative analysis of embedded

operating systems. The study in this paper focused on a selection of systems commonly utilized in

industrial and academic environments. We evaluated embedded operating systems like Linux,

Android, QNX, FreeRTOS, TinyOS, PalmOS, Ubuntu, LiteOS, VxWorks, and Integrity based on

specific criteria. It will help industries and academics select embedded operating systems according

to requirements for performing specific tasks.

Keywords—RTOS, Embedded systems, Internet of Things, Software, Multi-core

1. Introduction

Embedded operating systems consist of both hardware and software, which means they contain

software and a processor. They are self-contained in the device and reside in the ROM. Typically

suitable for specific functions or use cases rather than applications or tasks. Embedded systems have

a small amount of memory and processing power. Embedded OS runs on computers that control

devices like microwave ovens, TV sets, and mobile telephones. They are similar to real-time

operating systems (RTOS) but are constrained by limitations in terms of size, power, and memory.

In the early 20th century, mechanical and electrical systems were embedded in several devices, such

as early calculators and industrial machinery. The Apollo Guidance Computer (AGC) marked the

introduction of embedded operating systems in the 1960s, representing a significant historical

milestone in the development of embedded systems. It played a crucial role in NASA's Apollo

spacecraft, delivering navigation, control capabilities, and guidance during historic lunar missions.

The 1970s and 1980s witnessed the emergence of microcontrollers and microprocessors, enabling

more sophisticated embedded systems. In the 1980s and 1990s, real-time operating systems were

established. They provide deterministic response times and are used in many industries, like

aerospace and telecommunications. In the late 1990s, embedded Linux was developed, which is a

more flexible and open-source alternative to several types of applications. The early 2000s witnessed

the emergence of smartphones with Android and iOS operating systems that support embedded

functions. In recent years, the use of the Internet of Things has increased, where embedded operating

systems play a significant role. Many companies now develop customized embedded operating

systems for specific devices and applications.

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.8 January - February – 2024

DOI:10.46647/ijetms.2024.v08i01.005 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 35

Embedded operating systems are utilized in a wide range of applications where dedicated, specialized

software is required to control and manage hardware. In smart TVs, embedded OSs power the user

interfaces, networking, and functionality of modern smart televisions. They are used in PLCs

(programmable logic controllers) to control machinery and manufacturing processes in industries. In

patient monitoring equipment, embedded OSs are used in many devices, like ECG monitors and

infusion pumps. It is also used in communication systems for routing and switching. Smartphones

run on embedded OSs such as Android and iOS. In-home automation embedded systems are used in

many pieces of equipment, like microwave ovens, washing machines, dishwashers, and so on.

Wearable devices like smartwatches and fitness trackers use embedded OS for functionality. Devices

that act as intermediaries between IoT sensors and the cloud often run embedded OSs to manage data

transmission and processing. So, these are the few applications of embedded operating systems,

showcasing their versatility and importance in various industries and technologies.

2. Literature review

Yew Ho Hee et al., “Embedded operating systems and industrial applications: a review." This review

provides a systematic examination of the shared characteristics and distinctions between different

embedded operating system solutions. It also analyzes the factors that play a role in the decision-

making process when choosing the most appropriate solution for specific applications. The review

discusses three standard solutions, including real-time operating systems (RTOS), super loops, and

cooperative systems. By categorizing tasks into foreground and background execution domains, the

paper explores the core principles and operational concepts associated with each of these solutions.

Karunakar Pothuganti et al., "A Comparative Study of Real-Time Operating Systems for Embedded

Systems" This paper presents a comprehensive analysis encompassing both quantitative and

qualitative findings obtained from the evaluation of real-time operating systems (RTOS). The study

encompassed the examination of multiple systems, such as Windows CE, VxWorks, QNX Neutrino,

Linux, and RTAI-Linux, which are widely used in both industrial and academic contexts.

Furthermore, the analysis incorporates Windows XP as a reference point for traditional non-real-time

operating systems, as these are often used inadvertently in instrumentation and control applications.

The paper also covers aspects such as worst-case response times, latency, clock accuracy, and

response time.

Luis Fernando Friedrich et al., “A Review of Operating System Infrastructure for Real-Time

Embedded Software” This paper offers an overview of the strategies and methodologies associated

with operating systems used to address the changing requirements in the field. Currently, there is a

growing trend towards implementing embedded systems in a distributed fashion, and a wide

spectrum of high-performance distributed embedded systems have been conceptualized and

deployed. The design of embedded systems heavily relies on the efficient interaction of distributed

processors, and it is clear that due consideration must be given to the software infrastructure,

including operating systems, to ensure they can provide the necessary functionality to meet these

evolving demands.

Robert P. Dick et al., "Power Analysis of Embedded Operating Systems" In this research paper, the

authors delve into the power consumption analysis of real-time operating systems (RTOS), a critical

component within the system software layer. Despite the widespread adoption and significant role of

RTOS in mobile and low-power embedded systems, limited knowledge exists regarding their power

consumption characteristics. Their studies offer power consumption profiles for commercial real-

time operating systems, specifically µC/OS when executed on an embedded system based on the

Fujitsu SPARClite processor. The authors demonstrate various strategies for designing application

software that effectively leverages the RTOS to achieve energy efficiency. This research serves as

an initial step in establishing a structured approach to RTOS power modeling and optimisation.

Sagar PM, "Embedded Operating Systems for Real-Time Applications" In this paper, the authors

provide information about the workings of embedded systems, what operating systems mean, the

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.8 January - February – 2024

DOI:10.46647/ijetms.2024.v08i01.005 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 36

Soft

features of real-time operating systems, and also about case studies on different real-time embedded

operating systems. Real-time operating systems facilitate the development and scalability of real-

time applications and help to form processes by segregating application code into distinct tasks.

Additionally, an RTOS optimizes system resources and provides valuable services, including

mailboxes, time delays, time-outs, and more.

3. Embedded Operating System Parts And Operation

Mouse Keyboard Switches Printers Monitors Buzzers

Fig 1. Process of Embedded Operating System

It is a computer operating system designed for use in embedded computer systems. These operating

systems are manufactured to be compact, efficient, resourceful, and reliable, and to eliminate features

unnecessary for specialized applications. It gives the output to humans in forms like audio, text

messages, images, and video. Mainly, we use software in embedded operating systems for

programming the code. This programming code helps to convert machine-level languages into user-

understandable programming languages such as Java, C, and C++.

Input Tool: It is used to transmit data from users to the system. Users serve as the source of input.

Keyboard, mouse, microphone, switches, sensors, etc. come under the input tools.

Output Tools: These devices are used to receive signals from software. They present results in the

form of text, sounds, images, or videos. Some common devices are printers, monitors, LED displays,

LCD screens, various types of motors, buzzers, and so on.

Memory: The memory is used to store data. Some of the memory devices are SD cards, RAM, ROM,

EEPROM (Electrically Erasable Programmable Read-Only Memory), and Flash memory. The

memory devices used in the embedded system are non-volatile RAM, volatile RAM, dynamic

random-access memory, and so on.

Software: Software has supreme importance within embedded operating systems as it acts as the

intermediary between input and output tools. It assumes the vital responsibility of controlling and

coordinating the hardware components of an embedded system, ensuring the efficient and dependable

execution of specific tasks.

4. Methodology

Now we are going to see information about various embedded operating systems based on their

specialty, scheduling, priority level, and applications based on their performance.

Linux on embedded systems

Linux on embedded systems refers to the use of the Linux operating system on embedded computing

devices. This system is designed for specific tasks such as controlling machinery appliances,

monitoring sensors, or running in-car entertainment systems. Linux is open-source software. There

are real-time Linux variants like PREEMPT-RT that provide predictable and low-latency responses.

The compatibility of this embedded OS is versatile but can be resource-intensive. Security depends

on configuration and additional tools. Linux uses a priority-based scheduling algorithm. The Linux

scheduler is a Completely Fair Scheduler (CFS) for process management. Linux supports real-time

scheduling with SCHED_FIFO and SCHED_RR policies, making it suitable for real-time

applications. Linux offers control groups for managing and monitoring resource allocation, allowing

Input Other

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.8 January - February – 2024

DOI:10.46647/ijetms.2024.v08i01.005 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 37

fine-grained control of scheduling and resource usage. Linux allows setting CPU affinity for

processes, ensuring that they run on specific CPU cores. The Linux scheduler includes load-balancing

mechanisms to distribute tasks evenly across CPU cores.

Android

Android is an open-source operating system. It is designed for mobile devices but is also used in

embedded systems. Apps and development resources for Android have a vast ecosystem. Android

uses the Linux kernel for core operations, and it adds its own application framework for managing

app processes and scheduling. Android uses the Zygote process to create new app processes

efficiently, reducing startup times. Android can be resource-intensive, making it suitable for more

powerful embedded devices. It provides the Looper class for managing message loops and event

scheduling in apps. It has a user-friendly interface with extensive customization options. Security

mechanisms are provided by Android. It is essential for mobile and IOT security.

QNX

QNX is a real-time operating system with a microkernel architecture. QNX is known for its reliability

and is often used in safety-critical and automotive applications. It offers deterministic real-time

performance. In the automotive industry, QNX is popular for in-vehicle infotainment and control

systems. QNX can scale from small systems to complex embedded applications. QNX security

features are used in applications where security is paramount. QNX's process scheduling is based on

priorities, deadlines, and resource constraints, making it suitable for critical real-time applications.

QNX provides POSIX-compliant (portable operating system interface for Unix) APIs, allowing

developers to use familiar scheduling mechanisms. QNX offers resource managers the ability to

control and allocate system resources efficiently, enhancing scheduling predictability.

FreeRTOS

The FreeRTOS operating system is designed for real-time applications with predictable scheduling.

FreeRTOS uses a priority-based scheduling algorithm. FreeRTOS has a small memory and storage

footprint, making it suitable for resource-constrained devices. It is highly portable. It can be used for

hardware platforms. FreeRTOS employs a task-based programming model for efficiency and

simplicity. There is an active community providing support and libraries for FreeRTOS. FreeRTOS

supports preemptive scheduling, ensuring that higher-priority tasks can interrupt lower-priority ones.

It provides round-robin scheduling for tasks with the same priority, enhancing fairness. FreeRTOS

tasks can be delayed for a specified time or until an event occurs.

TinyOS

TinyOS is designed for low-power wireless sensor network applications. TinyOS follows an event-

driven programming model, where tasks are scheduled based on events. TinyOS minimizes resource

consumption to extend battery life. It is designed for applications with intermittent data. Applications

are built using a component-based architecture for reusability. TinyOS offers a simple and efficient

framework for sensor data processing. TinyOS is made based on the priority of events, and higher-

priority events preempt lower-priority ones. TinyOS is optimized for low-power operation, with

scheduling mechanisms designed to conserve energy.

PalmOS

PalmOS was designed for stylus-based touchscreen devices, making it intuitive for its time. PalmOS

was a single-tasking operating system. It could only run one application at a time. PalmOS was

widely used in Palm pilot devices for personal organization and data management. It supported a

range of third-party applications, enhancing its functionality. Applications in PalmOS use

cooperative multitasking, where they yield control to other applications voluntarily. PalmOS devices

had limited memory and storage capacity. Memory constraints and management affect scheduling in

PalmOS, as freeing memory is essential to accommodating new tasks. It supported data

synchronization with desktop computers for data backup and transfer. It lacked support for

multimedia and advanced internet connectivity. Event-driven applications in PalmOS are scheduled

to handle user and system events. PalmOS manages foreground and background tasks, with priority

given to foreground applications.

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.8 January - February – 2024

DOI:10.46647/ijetms.2024.v08i01.005 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 38

Ubuntu

Ubuntu is a popular Linux distribution known for its user-friendly interface and extensive software

repository. Ubuntu offers separate distributions for desktop and server use, providing a wide range

of applications and services. Ubuntu is open-source, which allows for customization and community-

driven development. This software center simplifies installation and management. Ubuntu can be

configured with real-time extensions like the PREEMPT-RT patch set to support real-time tasks. It

supports a broad range of hardware, including x86 and ARM architectures. Ubuntu implements nice

values to prioritize processes, allowing users to influence scheduling. Priority levels can be assigned

to processes to influence their scheduling order.

Huawei LiteOS

Huawei LiteOS was an open-source, lightweight real-time operating system. It has a small kernel,

less than 10 kilobytes. LiteOS is energy-efficient and has a fast startup within milliseconds. It

supports Wi-Fi, Zigbee, Ethernet, and different IoT protocols. It is designed for low-power, resource-

constrained IoT devices and offers efficient performance. LiteOS includes a hierarchical file system

and a wireless shell interface for user interaction, which operate through UNIX-like commands. It

provides kernel support for dynamic loading and native execution of multithreaded applications. It

facilitates software updates through a clear separation between kernel and user applications,

connected via a range of system calls. LiteOS supports round-robin, fixed priority, earliest deadline

first, and deadline-based scheduling.

VxWorks

VxWorks is renowned for its unparalleled deterministic performance. It is designed for a scalable,

safe, secure, and reliable operating environment ideal for mission-critical computing systems with

the highest demands. It is often used in specialized applications with less focus on user interfaces.

The VxWorks development environment contains the kernel, other software and hardware

technologies, and board support packages. Scalability, safety, security, graphics, and connection have

all been enhanced to meet the demands of the Internet of Things (IoT). VxWorks performs functions

of task management, memory management, and interrupts. There is no process for context switching.

The interrupt vector table stores the OSR address, which is supplied directly from the hardware. It

supports round-robin and priority scheduling.

Integrity

Integrity is an RTOS known for its real-time capabilities and hardware compatibility. It has WPA2,

Bluetooth, and 3G Wi-Fi support. For routing, it uses the IPv4 and IPv6 protocols. Integrity supports

2D, 3D, and OpenGL graphics. It is a safe and secure separation microkernel architecture. The

integrated architecture supports multiple protected virtual address spaces, each of which can restrain

multiple application tasks. Mostly, this embedded OS is used in safety-critical systems with budget

considerations. It supports round-robin, priority-based, fixed-priority preemptive, and deadline-based

scheduling. Integrity supports Rate Monotonic Scheduling (RMS), a well-known real-time

scheduling algorithm that assigns priorities based on task periods; shorter periods receive higher

priorities.

5. Results And Discussion

Selecting the best embedded operating system is a complex and critical task. The selection process

depends on the specific application's requirements. Making the right choice can lead to a cost-

effective solution and the ability to achieve excellent results within project deadlines. With the

increasing use of the Internet of Things (IoT), the demand for embedded OS is increasing.

Here we provide information about the type of kernel, threading, scheduling, and priority level in

different embedded operating systems.

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.8 January - February – 2024

DOI:10.46647/ijetms.2024.v08i01.005 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 39

Criteri a Linux Androi d QNX FreeR

TOS

TinyO S PalmO S Ubuntu LiteOS VxWor

ks

Integrit y

Kernel Linux

Kernel

Linux

long-

term

support

ed (LTS)

kernel

Microk

ernel

Real-

Time

Microk

ernel

- Monoli

thic

(Monol

ithic)Li

nux

Kernel

Real-

Time

Monoli

thic

Microk

ernel

Thread s Both

User and

Kernel

Level

Both

User and

Kernel

Level

Kernel

Level

Kernel

Level

User

Level

User

Level

Kernel

Level

User

Level

Kernel

Level

Kernel

Level

Schedu

ling

Priorit y

based

Priorit y

based

Priorit y

based

Preem

ptive

Priorit y

based

Priorit y

based

Priorit y

based

Round-

robin,

fixed

priority

Round-

robin

and

priority

Round-

robin,

priority

based

Priorit y

Level

40

Level

40

Level

256

Level

256

Level

32 or

16

Levels

32

Levels

40

Level

32

Level

256

Level

256

Level

Table 1: Segregation of different embedded operating systems according process specification

By studying different types of embedded OS with the help of criteria like application requirements,

resource efficiency, safety and reliability, etc. we provide a table. This table shows the segregation

of different embedded operating systems according to the given criteria. We showed which criteria

are available in which embedded operating system in yes and no format.

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.8 January - February – 2024

DOI:10.46647/ijetms.2024.v08i01.005 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 40

Table 2: Segregation of different embedded operating systems based on criteria

Criteria Linux Androi d QNX FreeR

TOS

TinyO S PalmO S Ubunt u LiteO S VxWo

rks

Integrity

Application

Requiremen ts

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Real-Time

Capabilities

No No Yes Yes Yes No No No Yes Yes

Resource

efficiency

No No No Yes Yes No Yes Yes Yes Yes

Safety and

Reliability

No No No Yes No No No No Yes Yes

Scalability Yes Yes No No No No Yes Yes No No

Hardware

Compatibili ty

Yes Yes Yes Yes Yes No Yes Yes Yes Yes

Use Case

Alignment

No Yes No No Yes Yes No Yes No No

Performanc e

Testing

No No No Yes Yes No Yes Yes Yes Yes

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 1 Volume No.8 January - February – 2024

DOI:10.46647/ijetms.2024.v08i01.005 ISSN: 2581-4621

@2024, IJETMS | Impact Factor Value: 5.672 | Page 41

The choice of an operating system among the 10 listed depends on the specific requirements of our

projects. Specifically, select the real-time embedded operating system because it can perform tasks

in any environment.

CONCLUSION

Linux emerges as a highly versatile operating system, well-rounded option for making it an excellent

choice for a wide range of applications. Android is ideal for mobile devices, while QNX, VxWorks

and Integrity excel in real-time and safety-critical applications. FreeRTOS is lightweight and suitable

for resource-constrained systems, while Ubuntu is a general-purpose option aligned with many

criteria. Ultimately, the decision should be guided by our project’s unique needs, considering factors

such as real-time capabilities, resource efficiency, hardware compatiblity, security etc.

Our comprehensive study reveals that embedded operating systems are like tools, and each designed

is for specific jobs. Imagine it’s like having a toolbox with different tools for different tasks. In many

cases, especially in complex systems, we use more than one tool(or embedded operating system) to

get everything done efficiently. This allows each part of the system to work at its best, making the

whole thing work better.

References

1. Ywe Ho Hee, Mohamad Tarmizi Abu Seman, Mohamad Khairi Ishak, Mohd Shahrimie Mohd

Assari “Embedded operating system and industrial applications: a review” Bulletin of Electrical

Engineering and Informatics,Vol. 10,No.3,pp.1687-1700,June 2021.

2. Karunakar Pothuganti, Swathi Pothuganti, Aredo Haile “A Comparative Study of Real Time

OPerating Systems for Embedded Systems” International Journal of Innovative Research in

Computer and Communication Engineering, Vol. 4, Issue 6, pp. 12008-12013, June 2016.

3. Aravinda Prabhu. S, Ganesh Prabhu, Preethika R “A Study of Operating System for Embedded

Systems” International Journal of Latest Trends in Engineering and Technology, pp. 54-58, 2016

4.Luis Fernando Friedrich, Mario A. R. Dantas “A Review of Operating System Infrastructure for

Real-Time Embedded Software”, Journal of Communication and Computer 12, pp.273-285, 2015

5.Sachin R. Sakhare, Dr. M.S. Ali “An Adaptive Framework for the Selection of Embedded

Operating Systems” , International Journal of Scientific and Engineering Research, Vol.2, Issue

8,Aug 2011.

6. Sagar P M “Embedded Operating Systems for Real-Time Applications”, M.tech credit seminar

report, IIT Bombay, Nov 2002.

7. Robert P. Dick, Anand Raghunathan, Ganesh Lakshminarayana, Niraj K. Jha “Power Analysis of

Embedded Operating Systems”,37th Design Automation Conference, pp. 312-315,June 2000

