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ABSTRACT 
In control engineering, Inverted Pendulum Systems (IPS) stability analysis is crucial. In this paper, a 

normal MIT (Massachusetts Institute of Technology) rule, fractional-order MIT (FOMIT) rule and 

modified MIT rule-based Model Reference Adaptive controller (MRAC) have been designed to 

stabilize IPS. The nature of the performance of IPS has also been analyzed to track a stable reference 

model. After implementation of all the three mentioned methods, it has been found that MRAC using 

the standard MIT rule is unable to control IPS and FOMIT rule-based MRAC method necessitates 

higher values of adaptation-gains to achieve the desired response, while modified MIT rule-based 

MRAC shows the desired response at reduced adaptation gain value. The performance analysis has 

been carried out by comparing the results obtained for all the three mentioned rules with the variations 

in the adaptation gain, rise time, settling time and peak overshoot on MATLAB/Simulink platform. 

The obtained results present encouraging outcomes. 

Keywords— MRAC, Adaptation gain, Reference Model, MIT Rule, Fractional-Order MIT 

Rule, Modified MIT rule 

 

1. Introduction 

An inverted pendulum system is an excellent example of a modern control challenge because it is a 

very unstable nonlinear system [1]. It belongs to the category of less triggering systems, where the 

number of mechanical control inputs is smaller than the number of degrees of freedom. This adds to 

the difficulty of the IPS in planning, testing, and judging different classical control methods. As a 

result, researchers are now curious about how to regulate an Inverted Pendulum (IP). It provides the 

ideal setting for the testing and implementation of several logics in the field of control engineering 

[2]. Ship stability in contrast to winds, regulating the altitude of aircraft, missiles, airplane landing, 

etc., includes regulating behavior comparable to the IP control [3]. 

Several control techniques have been used to illustrate the IP, including linear techniques such as 

state space pole placement control [4], linear quadratic regulator (LQR) method [5-6] and 

Proportional Integral Derivative (PID) control [7], Hedge-algebras theory and nonlinear methods 

such as robust control [8], energy-based and passive-control [9].  

The aim of this work is to stabilize and study the nature of the performance of IPS with different types 

of MIT rule-based MRAC. The stability analysis of an inverted pendulum using the standard MIT 

rule, the fractional-order MIT rule, and the modified MIT rule on MRAC to follow a stable reference 

model has been conducted. In conclusion, MRAC based on the standard MIT rule is ineffective at 

regulating IPS, while the FOMIT rule-based MRAC strategy requires greater values of adaptation 

gain. At lower adaptation gain values, MRAC based on a modified MIT rule is able to achieve the 

desired response.  
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2. Inverted Pendulum 

The inverted pendulum has been used as a standard for evaluating control strategies since it is one of 

the most challenging systems to stabilize in the area of control-systems [10]. In a nonlinear dynamic 

system, an IPS has a stable balance point in the pending situation and an unstable one when it is 

upright. In our research, we have assumed the inverted pendulum shown in Fig.1. 

 
Fig.1: Free body diagram of the inverted pendulum system 

The pendulum consists of weight dangling from a pivot so that it can swing back and forth. A lateral 

displacement of the pendulum's equilibrium points experiences a reinstating force owing to gravity 

that causes it to speed up and return to that position at an angle of θ = 0. When the pendulum's mass 

and the reinstating force are assorted, the outcome is a back-and-forth motion about the balance point. 

In the above Fig. 1, let d1 be the length of the pendulum, C is the frictional constant, m is the mass 

of the pendulum, g is acceleration, d0 is the half-length of the pendulum at the centre, and T is the 

tension. The pendulum's equation of motion is [11]: 

𝐽
𝑑2

𝑑𝑡2 + 𝐶
𝑑𝜃

𝑑𝑡
− 𝑚𝑔𝑑0 cos 𝜃 = (𝑑1)𝑇                                             (1) 

Taking Laplace Transform of eq. (1) rearranging as 
𝜃(𝑠)

𝑇(𝑠)
=  

𝑑1

𝐽𝑠2+𝐶𝑠−𝑚𝑔𝑑0
                                                          (2) 

The parameters of IPS are given in Table 1: 

Table 1: Plant Parameters Values [11] 

Parameters Values 

Inertia (J) 0.2453 Kg.m2 

Frictional Force (C) 0 

Mass of Pendulum (m) 900 g 

Gravitational Acceleration (g) 9.81 m/s2 

Half Length of the Pendulum at the 

Centre (d0) 

0.051 m 

Length of Pendulum (d1) 0.102 m 

Parameter values for a real-time process lead to the following transfer function for the entire system, 

given by eq. (3) 
𝜃(𝑠)

𝑇(𝑠)
=  

0.102

0.2453𝑠2−0.4503
                                                          (3) 

It may also be written as eq. (4), 
𝜃(𝑠)

𝑇(𝑠)
=  

0.4158

𝑠2−1.836
                                                               (4) 

 

3. Model Reference Adaptive Control 

MRAC is an example of non-dual adaptive control, which is a larger class of control systems. [12]. 

We can find out how well the system works by looking at a reference model. A difference method is 

used to modify the parameters of the feedback controller after comparing the real output with the 

modelled output. In order to approximate the reference model, the MRAC models the output of the 

plant or system. Fig. 2 shows the fundamental block diagram of the MRAC system. 
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Fig.2: Block diagram of Model Reference Adaptive Controller 

The requirement-based reference model selection is the initial stage in MRAC. The next step is to 

update the controller's configurable settings by designing the control algorithm. The intended 

performance parameters, including the system response's peak-overshoot (Mp), settling time (Ts), and 

rise time (Tr), are detailed in the reference model. Based on Dinakin and Oluseyi's (2021) study, this 

research work employs a critically damped (ζ=1) second-order system with a natural frequency 

(ωn=3) as reference model. The reference model's transfer function is stated as [13]: 
𝑦𝑚(𝑠)

𝑟(𝑠)
=

𝜔𝑛
2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2                                                           (5) 

𝑦𝑚(𝑠)

𝑟(𝑠)
=

9

𝑠2+6𝑠+9
                                                                   (6) 

 

4. MIT Rule 

People often refer to this rule as the MIT rule since it was developed by the Massachusetts Institute 

of Technology (MIT). It uses practical systems to implement the MRAC framework. A loss function 

J, often called the cost function, was required for the system stability analysis according to the MIT 

rule. This function can be represented as [14, 15]: 

 𝐽(𝜃) =
1

2
𝑒2                                                                    (7) 

𝜕𝐽

𝜕𝑒
= 𝑒                                                                         (8) 

This is where e stands for output error, which is the variation between the plant's output and the 

reference model's output, and θ (i.e., θ1 and θ2) is the control parameter, commonly known as the 

regulating parameter. A parameter represented by θ (i.e., θ1 and θ2) is adjusted to decrease the loss 

function in this scenario. Hence, it would be suitable to change the value such that it moves counter 

to J's gradient. Fig. 3 shows the MRAC block diagram that follows the MIT rule. Here we show the 

most fundamental form of the MIT rule [13]: 

 
𝑑𝜃

𝑑𝑡
= −𝛾

𝜕𝐽(𝜃)

𝜕𝜃
                                                                 (9) 

 
𝑑𝜃

𝑑𝑡
= −𝛾𝑒

𝜕𝑒(𝜃)

𝜕𝜃
                                                             (10) 

The sensitivity derivative of a plant is represented by ∂e/∂θ. The symbol θ represents the parameter 

and this term shows how changing it impacts the error. The γ is adaptation gain [11, 13]. A tuning 

parameter that controls the rate of adaptation in the controller is called adaptation gain. Finding an 

appropriate balance between rapid convergence and stability is the goal of the adaptation gain. Faster 

convergence and parameter updates are possible with a large adaption gain, but the control system is 

more likely to become unstable and overshoot if this gain is too high. While a modest adaption gain 

may enhance stability, it may also cause convergence to be slower and tracking performance to be 

worse. Both the properties of the controlled system and the performance requirements should be 

considered when choosing the adaption gain. A systematic approach, like optimisation algorithms, 

advanced control design methodologies, or trial and error, can be used to find the optimal adaptation 

gain. To determine an appropriate range of adaptation gain, this paper use the trial-and-error 

technique. The control law is described as (11). 
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𝑢 =  𝜃1𝑟 − 𝜃2𝑦                                                                (11) 

where θ1 and θ2 are controller parameters. The Inverted Pendulum system's transfer function is 

obtained as, 
𝜃(𝑠)

𝑇(𝑠)
=  

0.4158

𝑠2−1.836
                                                                 (12) 

The above eq. (12) may be simplified as  
𝑦(𝑠)

𝑢(𝑠)
=

𝑏

𝑠2−𝑎
                                                                      (13) 

By substituting the control law from the eq. (11) in eq. (13), we obtain, 
𝑦(𝑠)

𝑟(𝑠)
=

𝑏𝜃1

𝑠2−𝑎+𝑏𝜃2
                                                                (14) 

By comparing the above eq. (14) with eq. (5) we get, 

𝜃1 =
𝜔𝑛

2

𝑏
        and         𝜃2 =

𝜔𝑛
2 +𝑎

𝑏
                                                   (15) 

To achieve optimal model tracking, the controller parameters must converge to these values. The 

difference between the output of the reference model, 𝑦𝑚, and the plant output, y, is defined as the 

term "error function," It can be represented as follows by eq. (16): 

𝑒 = 𝑦 − 𝑦𝑚                                                                       (16) 

We are taking Laplace Transform of eq. (16) and putting eq. (5) and eq. (14), we get: 

𝑒 =
𝑏𝜃1

𝑠2−𝑎+𝑏𝜃2
𝑟 −

𝜔𝑛
2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2 𝑟                                                      (17) 

𝜕𝑒

𝜕𝜃1
=

𝑏

𝑠2−𝑎+𝑏𝜃2
𝑟                                                                 (18) 

𝜕𝑒

𝜕𝜃2
=

−𝑏2𝜃1

𝑠2−𝑎+𝑏𝜃2
𝑟                                                                 (19) 

By putting the value of θ2 from eq. (15) in eq. (18) and (19), we get, 
𝜕𝑒

𝜕𝜃1
=

𝑏

𝑠2+𝜔𝑛
2 𝑟                                                                     (20) 

𝜕𝑒

𝜕𝜃2
=

−𝑏

𝑠2+𝜔𝑛
2 𝑦                                                                    (21) 

By substituting the eq. (20) and (21) in eq. (10), we obtain eq. (22) and (23), respectively, 
𝜕𝜃1

𝜕𝑡
= −𝛾𝑒

𝑏

𝑠2+𝜔𝑛
2 𝑟                                                                 (22) 

𝜕𝜃2

𝜕𝑡
= 𝛾𝑒

𝑏

𝑠2+𝜔𝑛
2 𝑦                                                                    (23) 

Where γ is adaptation gain for controller parameters θ1 and θ2, respectively. 

 
Fig. 3: Block diagram of MRAC using standard MIT rule 

 

5. Fractional-Order MIT Rule 

As a result of the MIT rule, the controller is extremely sensitive to variations in the amplitude of the 

reference input. An improved technique [11] of the MIT rule for adjusting parameters to generate the 

control law has been presented to address this issue. Here, we apply the MIT rule expression to the 

G-L (Grünwald-Letnikov) fractional-derivative [11] on the error signal, and the resulting equation 

looks like eq. (24), 
𝑑𝜃

𝑑𝑡
=  −𝛾𝑒

𝑑𝛼𝑒

𝑑𝜃𝛼                                                                   (24) 



International Journal of Engineering Technology and Management Sciences 

Website: ijetms.in Issue: 1 Volume No.8 January - February – 2024 

DOI:10.46647/ijetms.2024.v08i01.031 ISSN: 2581-4621 
 

 

@2024, IJETMS          |         Impact Factor Value: 5.672     |          Page 240 

 

Both adaption gain and derivative order alpha contribute to the rate of change of the parameter θ. So, 

the definition of the G-L fractional derivative [16, 17] is 

𝐷𝛼𝑓(𝑡) = 𝑙𝑖𝑚ℎ→0  
1

ℎ𝛼
∑ (−1)𝑘 (

𝑛
𝑘

) 𝑓(𝑘ℎ − ℎ)𝑛
𝑘=0                                        (25) 

In which h is the step size. It has been derived under the assumption that 𝐷𝛼𝑓(𝑡) ≈ 𝐷ℎ
𝛼𝑓(𝑡),  

𝐷ℎ
𝛼𝑓(𝑡) =  ℎ−𝛼 ∑ (−1)𝑗 (

𝛼
𝑗 ) 𝑓(𝑘ℎ − 𝑗ℎ)𝑘

𝑗=0                                           (26) 

Now (
𝛼
𝑗 ) can be approximated as 

𝛼!

𝑗!(𝛼−𝑗)!
=  

Γ(𝛼+1)

Γ(𝑗+1)Γ(𝛼−𝑗+1)
                                                            (27) 

Here Γ is a gamma function [13]. The error signal has been processed by this gamma function. 
𝑑𝜃

𝑑𝑡
=  −𝛾 (

𝑑𝛼𝑒

𝑑𝜃𝛼) 𝑦𝑚                                                              (28) 

In this equation, γ is the adaptive gain, ym is the output of reference mode, e is the error between the 

plant and reference model, and α is the extra degree of freedom. This fractional-order rule was 

developed in MATLAB Simulink using these mathematical equations 

 

6. Modified MIT Rule 

Here, we go over how the IPS has adopted an MRAC scheme based on modified MIT rules. The 

modified MIT rule-based MRAC is planned to improve the response of the system. The modified 

MIT rule-based MRAC scheme is just the PID controller superimposed on the MIT rule-based MRAC 

control method. Here, we stabilize the system and follow the intended response by combining the 

control laws of MRAC using the MIT rule and PID control law. The PID control law's Proportional, 

Integral, and Derivative gains can be modified with the MIT rule's adaption parameters.   Therefore, 

the controller law is demonstrated as Eq. (29). Fig. 4 shows the block diagram of the modified MIT 

rule. 

𝑢 =  𝜃1𝑟 − 𝜃2𝑦 − (𝑘𝑝𝑒 + 𝑘𝑖 ∫ 𝑒𝑑𝑡 + 𝑘𝑑
𝑑𝑒

𝑑𝑡
)                                        (29) 

 
Fig. 4: Block diagram of MRAC using modified MIT rule 

 

7. Performance Evaluations and Simulation Results 

7.1 MIT Rule 

In this scheme, a controller for a second-order Inverted Pendulum System has been developed with 

the MRAC according to the conventional MIT rule. The simulation results for adaptation gain γ = 1 

and γ = 10 have been shown in Fig. 5(a) and Fig. 5(b), respectively.  

 
(a) 
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(b) 

Fig.5: Simulation result of MRAC with normal MIT rule for (a) γ =1 and (b) γ = 10 

From these results, it has been noticed that with the conventional MIT rule, initially, the system tracks 

the reference model with oscillations, but after some time, it is unable to stabilize the system and the 

response goes unbounded. So, to stabilize the system a Fractional-Order MIT rule-based MRAC has 

been further implemented in the next section. 

7.2 Fractional-Order MIT Rule 

Implementing the FOMIT rule with fractional orders smaller than one and numerous adaptive gain 

values has allowed us to examine the effects of adding an extra degree of freedom, alpha. The 

behavior of the step response of the IP using the FOMIT rule with α = 0.5 and multiple γ values has 

been shown in Fig. 6 and Fig. 7. The FOMIT has been designed to stabilize the IP system. From these 

results, it has been analyzed that the system response is very sluggish for lower values of adaptation 

gain. As the adaptation gain increases, the response becomes fast, but after γ = 50, overshoot is also 

introduced by analyzing Table 2, it may be observed that the best adaptation gain for FOMIT is 50. 

Fig. 8 shows the step response of FOMIT at γ = 50.

 

Fig.6: Simulation results of MRAC with FOMIT rule for γ = 1, 10, 40, 50,100 and 200 
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Fig.7: Simulation results of MRAC with FOMIT rule for γ = 1, 10, 40, 50,100 and 200 at the 

same axis 

 
Fig.8: Simulation result of MRAC with FOMIT rule for γ = 50 

Now from Table 2, it has been analyzed that with the variation of α from 0.5 to 0.9 and the γ from 1 

to 200, the reference model has been tracked well with the desired outcome. With each combination 

of α and γ, the performance specifications rise time (Tr), settling time (Ts), and peak overshoot (Mp) 

have been evaluated and shown in Table 2.  

Table 2: Performance Indices for Plant Using FOMIT Rule with Deferent Values of α and γ 

Alpha (α) Gamma (γ) Tr (sec) Ts (sec) % Mp 

 

 

 

0.5 

1 37.9734 48.3582 0 

10 31.4159 45.8398 0 

40 11.0021 19.6969 0.0353 

50 9.0060 16.0973 0.2121 

100 5.3048 14.8397 2.5474 

200 3.8973 13.3131 7.3051 

 

 

 

0.9 

1 75.8910 96.3745 0 

10 41.4226 71.1113 0 

40 11.0111 19.4209 0.0535 

50 9.0259 15.8712 0.2727 

100 5.3269 14.9234 2.7375 

200 3.8889 13.1330 7.5525 

 

7.3 Modified-MIT Rule 

As observed from Fig. 8, the FOMIT is found to stabilize the IPS but responds very slowly with some 

delay too. The modified MIT rule has been developed to deal with these issues. Here, we have 

combined the control law of MRAC using the MIT rule with PID control law such that the system 
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became stable and tracked the desired response. The gains of PID control law (Proportional, Integral, 

and Derivative) have been fine-tuned using the MIT rule's adaptation parameters. 

Ziegler-Nichols PID tuning cannot be employed since the plant model is open-loop unstable. The 

SISO design toolbox in MATLAB has been used to tune the PID controller based on a reliable 

response time tuning algorithm. Gains in the PID controller are calculated as follows: Kp = 100, Ki 

= 10 and Kd = 20.  

The behavior of the step response of the IP using the modified MIT rule for a range of adaptation 

gain from 0.01 to 2 has been shown in Fig. 9. A comparative analysis of the step response of the 

modified MIT rule-based MRAC scheme has shown in Fig. 10 for multiple values of adaptation gain. 

From these results, it has been found that for lower values of adaptation gain, the system response is 

very sluggish. As the adaptation gain increases, the response becomes fast, but after γ = 1, some 

overshoot is introduced. By analyzing these results and Table 3, it may observe that the best 

adaptation gain for the modified MIT rule is 1. The step response of the modified MIT rule at γ = 1 

is shown in Fig. 11.

 
Fig.9: Simulation results of MRAC with modified MIT rule for γ = 0.01, 0.1, 1 and 2 

 
Fig.10: Simulation results of MRAC with modified MIT rule for γ = 0.01, 0.1, 1 and 2 at the 

same axis
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Fig.11: Simulation result of MRAC with modified MIT rule for γ = 1 

From Table 3, it has been analyzed that by varying the adaptation gain from 0.01 to 2, the reference 

model has been tracked well with desired performance with the value of γ = 1. With the adaptation 

gain from 0.01 to 2, the performance specifications rise time (Tr), settling time (Ts), and peak 

overshoot (Mp) have been evaluated and shown in Table 3. 

Table 3: Performance Indices for Plant Using modified-MIT Rule with Deferent Values of γ 

Gamma (γ) Tr (sec) Ts (sec) % Mp 

0.01 1.1372 6.5158 5.6317e-04 

0.1 1.1363 3.0995 5.5247e-04 

1 1.1320 1.8503 0.0508 

2 1.1293 4.6928 2.3003 

7.4 Comparative Analysis of Results and Discussions 

The comparison between step response of normal MIT, FOMIT, and modified MIT rule-based 

MRAC has been shown in Fig. 12. Table 4 shows the comparative analysis of the responses of the 

designed controllers w.r.t. rise time (Tr), settling time (Ts) and peak overshoot (Mp). 

 
Fig.12: Simulation results of MRAC with MIT rule, FOMIT and modified for rule γ = 10, 50 

and 1, respectively 

MRAC using the normal MIT rule for IPS was to track the reference model with oscillations initially 

and after some time, it could not stabilize the system and the response went unbounded. Therefore, 

the FOMIT rule-based MRAC scheme has been employed to stabilize and study the performance of 

IPS with one extra degree of freedom alpha. The behavior of the step response of the IP with the 

FOMIT rule for a range of α and γ from 0.5 to 0.9 and from 1 to 200, respectively, have been analyzed. 

The FOMIT rule was found to stabilize the IPS and gave the best result at γ = 50, but the response is 

very sluggish with some delay. To overcome these problems, the modified MIT rule-based MRAC 

has been designed. The behavior of the step response of IPS with the modified MIT rule for a range 

of adaptation gain from 0.01 to 2 has been analyzed and it has been found that IPS has stabilized very 

fast at low adaptation gain compared to FOMIT. From Table 4 it has been concluded that modified 

MIT rule-based MRAC shows the best response with respect to the performance specifications 

considered. 

Table 4: The comparative analysis of performance indices for the plant using the best result 

given by all the three mentioned rule 
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Controller Gamma 

(γ) 

Tr (sec) Ts (sec) % Mp 

Normal MIT - - - - 

FOMIT 50 9.0060 16.0973 0.2121 

Modified 

MIT 

1 1.1320 1.8503 0.0508 

 

8. Conclusions 

In this paper, the traditional MIT, FOMIT and Modified MIT rule-based MRAC have been designed 

and simulated in MATLAB/Simulink for inverted pendulum system. The performance of normal and 

fractional order MIT rule-based MRAC systems has been compared to that of the modified systems, 

which is the MIT technique superimposed with a PID controller in their design. The traditional, 

fractional order and modified MRAC systems have demonstrated their adaptability and robustness in 

controlling IPS under various conditions. The adaptability gain parameter, a crucial component of 

these systems, has been shown to play a significant role in determining their performance. After 

carefully tuning this gain, we have achieved desirable control performance, with considerations for 

stability and tracking convergence. Our investigation has highlighted the importance of a balanced 

adaptation gain. Too high gain can lead to overshooting and instability, while too low gain may result 

in sluggish responses and poor tracking performance. Achieving the right balance is a critical aspect 

of the successful implementation of these adaptive control techniques. Through a rigorous 

examination of these adaptive control strategies, several key findings and insights have emerged. A 

significant contribution of this paper lies in the comparative stability and adaptation gain analysis of 

the controller designs. This comparative aspect is crucial for engineers and researchers seeking the 

most effective control strategy for similar dynamic systems.  

The conventional MRAC is suitable only for a few lower adaptation gain values. It has been observed 

with the conventional MRAC, that the IPS has given very poor results with very high oscillations and 

reduced tracking performance. To overcome these problems FOMIT rule-based MRAC has been 

designed. As a result of the fractional order MRAC, the IPS has been stabilized and gave the best 

result at γ = 50, but the response is very sluggish with some delay. The behavior of the step response 

of IPS with the modified MIT rule has been analyzed and it has been found that IPS has stabilized 

very fast at low adaptation gain compared to FOMIT. Hence, it has been concluded that MRAC using 

the normal MIT rule is unable to control IPS, and FOMIT rule-based MRAC method needs higher 

values of adaptation gains, while modified MIT rule-based MRAC shows the desired response at 

reduced adaptation gain value. 
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