

To Investigate The Development Of Better Formulations Including Plant Phytocompounds Is Critical For The Effective Treatment Of Fungal Activity

Susheela Khatwase¹, Bhavin Soni²

¹Research Scholar-Madhav University, Pindwara (Raj), ²Assistant professor -Madhav university, pindwara (Raj) Corresponding Author Orcid ID: 0000-0002-2482-3349

ABSTRACT

Over the last few decades, there has been a worldwide increase in the occurrence of fungal infections, as well as an increase in the resistance of specific fungi to various fungicidal agents used in medical practice. Furthermore, fungi are one of the most overlooked diseases, as evidenced by the fact that amphotericin B and other commercially available medications are still used as the gold standard in antifungal therapy. The majority of antifungal therapies have limitations in terms of toxicity, efficacy, and cost, and their widespread usage has also resulted in the establishment of resistant strains. As a result, there is a high desire for developing an antifungal that can act selectively on new targets while causing little side effects. Natural products, whether pure phytocompounds or standardised plant extracts, offer limitless prospects for novel drug discoveries due to their generally unrivalled chemical variety. The current chapter focuses on work done in the field of antifungal activity of diverse plant components and unique methodologies that will be the future prospects for new drug discoveries and better antifungal therapy.

Key words: antifungal, fungicidal, antifungal therapy, phytocompounds, fungal infections

Introduction

Fungal infections are among the most lethal illnesses, responsible for more than 1.5 million fatalities worldwide each year. The main reason that fungal infections are more dangerous is that they have been neglected by society. Though there have been considerable advances in the detection and treatment of fungal illness over the last 20 years, the majority of the population has yet to reap the advantages of these advances [1]. Skin infection is the fourth most common fungal disease, accounting for the bulk of deaths [2].

Plant kingdom has long been a hub for numerous natural substances with novel structures, which keeps researchers interested in researching many plant species even today. According to the findings of the new study, plants are rich in bioactive secondary metabolites such as saponins, alkaloids, and terpenoids, all of which have antifungal properties. Depending on this, these plants could be a promising future source of anti-fungal medications [3]. When recent trends in fungal illnesses and antifungal medicines are considered, it is clear that the development of fungus resistance to currently used antifungal drugs has grown [4-11].

There is always difficulty in antifungal treatment for patients receiving therapy for AIDS, diabetes, chemotherapy, or organ transplant because some of the molecular processes of fungus are similar to human, so toxicity to fungal cells could affect human cells as well [12]. Few medications have made an impact in the treatment of fungal infection in the last 30 years, as indicated in (Table 1), one of which is amphotericin B, which is one of the few fungicidal drugs available for antifungal therapy, but it also has some serious adverse effects (Table 2) [13].

Furthermore, the rise of Imidazoles and Triazoles was observed between the late 1980s and the early 1990s. These medication types were effective at inhibiting processes related with fungal cells. The main disadvantage connected with them was return of infection and fungal resistance to them [14]. As a result, it has become an obligation for researchers to identify and manufacture new, efficient, and safe anti-fungal therapies from novel sources such as plants. As a result, the current chapter seeks to comment on the current reality regarding significant plants and their antifungal derivatives that can be worked on in the future to generate more potent antifungal medications.

There are over 2 million fungal species in the globe, yet only 600 of them cause infection. *Cryptococcus, Candida, Trichophyton*, and *Aspergillus* are the most common species involved in infection. All fungal diseases that affect humans and are prevalent around the world can be classified into five categories.

The types are as follows:

1. Invasive fungal infections: examples are cryptococcal meningitis, Candida

bloodstream infection, invasive aspergillosis, Pneumocystis pneumonia

2. *Chronic lung or deep tissue infection*: under this type example is chronic pulmonary aspergillosis

3. *Allergic fungal disease*: examples are allergic bronchopulmonary aspergillosis also known as ABPA and severe asthma with fungal sensitization (SAFS)

S. No	Class	Drugs	Uses
1.	Azole antifungals	Clotrimazole, Econazole, Isoconazole, Miconazole, Ketoconazole, Itraconazole	Topical fungal infections, Candidiasis, aspergillus and candida infections, vaginal yeast infections
2.	Echinocandins	Caspofungin, Micafungin	Esophageal Candidiasis, Salvage therapy
3.	Polyenes	Amphotericin B, Nystatin	Systemic mycosis, superficial mycosis
4.	Phenolic cyclohexane	Griseofulvin	Dermatophytic infections
5.	Synthetic pyrimidines	Flucytosine	Cryptococcosis, severe invasive aspergillosis, cryptococcal meningitis treated along with other antifungals
6.	Morpholines	Amorolfine	Topical fungal infections
7.	Pyridines	Buthiobate, Pyrifenox	Dermatophytic infections, Tinea conditions
8.	Phthalimides	Captan	Invasive dermatophytic conditions and candida infections

Table 1. The synthetic drugs available in market for treatment of fungal diseases are – [15].

S. No	Side effects	Drugs
1.	Non-melanoma skin cancer	Voriconazole
	prolonged therapy	

International Journal of Engineering Technology and Management Sciences

Website: ijetms.in Issue: 6 Volume No.7 November - December - 2023 DOI:10.46647/ijetms.2023.v07i06.042 ISSN: 2581-4621

2.	Fever, Chills	Isavuconazole, Ketoconazole, Voriconazole, Flucytosine, Anidulafungin, Caspofungin
3.	Rash	Flucytosine, Fluconazole, Ketoconazole, Clotrimazole, Voriconazole
4.	Nausea, vomiting	Isavuconazole, Itraconazole, Flucytosine, Fluconazole, Ketoconazole, Clotrimazole, Voriconazole
5.	Abdominal pain	Flucytosine, Ketoconazole, Isavuconazole, Voriconazole
6.	Anemia	Amphotericin B, Caspofungin, Flucytosine
7.	Leukopenia, Thrombocytopenia	Flucytosine, Fluconazole
8.	Decreased renal function	Amphotericin B, Caspofungin, Voriconazole
9.	Headache	Flucytosine, Fluconazole, Ketoconazole, Isavuconazole, Voriconazole, Caspofungin
10.	Dark urine, clay-colored stools, jaundice	Anidulafungin C, Micafungin

Table 2. Adverse side effects of different antifungals.

Plants having antifungal activity

According to epidemiological data, the frequency and prevalence of major mycoses remains a public health concern. Resistance to antifungal medications has developed as a result of their growing use. The proliferation of multidrug-resistant fungus strains, as well as the scarcity of current medications, need the development of new classes of antifungals derived from natural materials.

S. No. Botanical nameFamily			Partsused	Chemical classes	Microorganism tested
1.	Eugenia uniflora	Myrtaceae	Leaves	Sesquiterpenes, Monoterpene, hydrocarbons	C. albicans, C. dubliniensis, C. glabrata, C. krusei [17]
2.	Psidium guajava	Myrtaceae	Leaves	Methanolic extract	C. albicans, C. dubliniensis, C. glabrata, C. krusei [17]
3.	Curcuma longa	Zingiberacea e	a Rhizome	Turmeric oil	C. albicans, C. dubliniensis, C. glabrata, C. krusei [17]
4.	Piptadenia colubrina	Mimosaceae	Stem bark		C. albicans, C. dubliniensis, C. glabrata [17]
5.	Schinus terebinthifolius	Anacardiacea e	a Stem bark	Extract	C. albicans, C. dubliniensis [17]

Website: ijetms.in Issue: 6 Volume No.7 November - December - 2023 DOI:10.46647/ijetms.2023.v07i06.042 ISSN: 2581-4621

6. <i>Persea americana</i> Lauraceae Leaves Chromene	C. albicans C. dubliniensis C. glabrata, C. krusei [17]
--	--

7.	Parapiptadenia rigida	Fabaceae	Stem bark	Pyrrolidineamic	deC. albicans [17]
8.	Ajania fruticulosa	Asteraceae	Fruits	Guaianolides	Candida albicans, C. glabrata A. fumigatus [17]

9.	Alibertia Maanaalaalla	Rubiaceae	Leaves	Extract	Cladosporium
	Macrophylla				sphaerospermum; C. cladosporioides; A.
					niger;
					Colletotrichum
					gloeosporioides [17]

10.	Aniba panurensis	Lauraceae	Wholeplan	t —	C. albicans [17]
11.	Aquilegia vulgaris	Ranunculace	aLeaves and stems	Bis (benzyl)	A. niger [17]
12.	Mimosa tenuiflora	Mimosaceae	Stem bark	Sesquiterpene lactone	C. albicans, C. dubliniensis, C. glabrata, C. krusei [17]
13.	P. regnellii	Piperaceae	Leaves	Extract	Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis [18]

Website: ijetms.in Issue: 6 Volume No.7 November - December - 2023 DOI:10.46647/ijetms.2023.v07i06.042 ISSN: 2581-4621

14.	Rubia tinctorum Rubiaceae	Root	Triterpene	A. niger, Alternaria alternaria, P. verrucosum, Mucor mucedo [19]
-----	---------------------------	------	------------	--

15.	Tithonia	Asteraceae	Wholeplan	nt Contained	Microbotryum
	diversifolia			saponins,	violaceum,
				Polyphenols	Chlorellafusca [20]
16.	Vernonanthura tweedieana	Asteraceae	Root	Extracts	<i>T. mentagrophytes</i> [21]

17.	Zingiber	Zingiberacea Rhizomes	Steroidal saponin	P. oryzae [22]
	officinale	e		
18.	Datura metel	Solanaceae Wholeplan	t Diterpenoid,	C. albicans, C.
			Alkaloids	tropicalis [23]
19.	Lupinus albus	Leguminosa Leaf surfac	e—	T. mentagrophytes
		e		[24]
20.	Ecballium	Cucurbitacea Fruit	Extract	Boitylis cinerea [25]
	elaterium	e		
21.	Cassia tora	Leguminosa Seeds	Anthraquinone	Botrytis cinerea,
		e		Erysiphe graminis,
				Phytophthora
				infestans,
				Puccinia recondita,
				Pyricularia grisea
				[26]

22.	Chamaecyparis Cupressace	eae Leaves an	nd Isoflavone	P. oryzae [27]
	pisifera	Twigs		
23.	Prunus yedoensis Rosaceae	Leaves	Diterpenes	C. herbarum [28]

Table 3. List of plants having antifungal activity against pathogenic fungi.

including medicinal plants. Medicinal plants have also been reported in traditional systems of medicine for the treatment of both human and animal mycoses, and are considered to be a valuable source for the discovery of new antifungal drugs. Manybooks have also reported and recorded the use of medicinal plants in the traditional system of medicine. Therefore, we have focused here mainly on the antifungal plants and their use against pathogenic fungi. The

DOI:10.46647/ijetms.2023.v07i06.042 ISSN: 2581-4621

antifungal activity associated plants are illustrated in (Table 3).

Phytochemicals and their antifungal activity

Plants and their biologically active chemical constituents, sometimes called secondary metabolites or bioactives, present numerous opportunities for the improvement of livestock production by inclusion in the diet. Several papers and reviews have been published on the occurrence of antifungal compounds in plant. However, literature and systematic reviews on the natural products as an alternative to antifungal drugs are still scanty. The distribution of antifungal compounds can be defined either on the basis of their taxonomic distribution or on the basis of their chemical classes. **Table 4** shows the antifungal natural products belonging to all major classes of secondary metabolites such as Phenolics, alkaloids, terpenoids, Saponins, flavanoids, Proteins and Peptides, etc.

S. No	Plants	Plant part	Phytochemicals
1	Aegle marmelos	Leaves	Essential oils
2	Alpinia galangal	Seeds	Diterpenes
3	Ananas comosus	Leaves	Protein
4	Blumea balsamifera	Leaves	Flavonoid luteolin
5	Camptotheca acuminate	Leaves	Flavonoid
6	Capsicum frutescens	Whole plant	Triterpene saponin
7	Cassia tora	Whole plant	Emodin, physcion and rhein
8	Datura metel	Whole plant	Alkaloid
9	Euonymus europaeus	Leaves	Protein
10	Haloxylon salicornium	Aerial part	Alkaloid
11	Juniperus communis	Leaves	Essential oil
12	Khaya ivorensis	Stem bark	Triterpenes
13	Lycium chinense	Root bark	Phenolic compounds
14	Musa acuminate	Banana	Protein
15	Ocimum gratissimum	Bark	Essential oil
16	Pinus pinaster	Leaves	Pinosylvin
17	Polygonum punctatum	Whole plant	Sesquiterpene
18	Smilax medica	Root	Saponins
19	Solanum tuberosum	Tubers	Protein
20	Thymus vulgaris	Whole plant	Essential oil
21	Trachyspermum ammi	Leaves, flowers	Essential oil
22	Trigonella graecum	Whole plants	Peptides
23	Zingiber officinalis	Rhizome	Protein

Table 4. List of plant components having antifungal property [29].

Conclusion

The number of fungal infections has increased during the previous 20 years. The medications now used to treat fungal infections have several negative effects, and resistance to these drugs is frequent. For many years, plants have been regarded as a traditional source of antifungal

treatments. Plant bioactives with antifungal activity may be considered for the creation of new and improved antifungal alternative formulations. The development of better formulations including plant phytocompounds is critical for the effective treatment of fungal illnesses. Further study in this subject may provide us with a greater number of options for treating fungal diseases, giving patients a higher quality of life.

References

- 1. Sanglard, D. (2002). Clinical relevance of mechanisms of antifungal drug resistance in yeasts. *Enfermedades infecciosas y microbiologia clinica*, 20(9), 462-470.
- Hay, R. J., Johns, N. E., Williams, H. C., Bolliger, I. W., Dellavalle, R. P., Margolis, D. J., ... & Naghavi, M. (2014). The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. *Journal of Investigative Dermatology*, 134(6), 1527-1534.
- 3. Arif, T., Bhosale, J. D., Kumar, N., Mandal, T. K., Bendre, R. S., Lavekar, G. S., & Dabur, R. (2009). Natural products–antifungal agents derived from plants. *Journal of Asian natural products research*, *11*(7), 621-638.
- 4. Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. *Nature*, 484(7393), 186-194.
- 5. Sanglard, D. (2003). Resistance and tolerance mechanisms to antifungal drugs in fungal pathogens. *Mycologist*, 17(2), 74-78.
- Rodriguez-Tudela, J. L., Alcazar-Fuoli, L., Cuesta, I., Alastruey-Izquierdo, A., Monzon, A., Mellado, E., & Cuenca-Estrella, M. (2008). Clinical relevance of resistance to antifungals. *International journal of antimicrobial agents*, 32, S111-S113.
- 7. Manavathu, E. K., Vazquez, J. A., & Chandrasekar, P. H. (1999). Reduced susceptibility in laboratory-selected mutants of Aspergillus fumigatus to itraconazole due to decreased intracellular accumulation of the antifungal agent. *International journal of antimicrobial agents*, *12*(3), 213-219.
- 8. Sanglard, D. (2002). Resistance of human fungal pathogens to antifungal drugs. *Current opinion in microbiology*, 5(4), 379-385.
- Pfaller, M. A., Diekema, D. J., Turnidge, J. D., Castanheira, M., & Jones, R. N. (2019, March). Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997–2016. In *Open forum infectious diseases* (Vol. 6, No. Supplement_1, pp. S79-S94). US: Oxford University Press.
- 10. Odds, F. C. (1996). Resistance of clinically important yeasts to antifungal agents. *International journal of antimicrobial agents*, 6(3), 145-147.
- 11. Sanglard, D. (2002). Clinical relevance of mechanisms of antifungal drug resistance in yeasts. *Enfermedades infecciosas y microbiologia clinica*, 20(9), 462-470.
- 12. Beck-Sague, C., Banerjee, S., & Jarvis, W. R. (1993). Analyzing socioeconomic and racial/ethnic patterns in health and health care. *American Journal of Public Health*, 83, 1739.
- 13. Tripathi, K. D. (2003). Essentials of Medical Pharmacology. New Delhi: Jaypee Brothers. *Medical publishers (P) LTD*, *5*, 235-249.
- 14. Rex, J. H., Rinaldi, M. G., & Pfaller, M. A. (1995). Resistance of Candida species to fluconazole. *Antimicrobial agents and chemotherapy*, 39(1), 1-8.
- 15. SJ, R. (2018). Wayne State University School of Medicine. Merck Manual professional version, Antifungal drugs.
- 16. Kobayashi, G. S. (1996). Disease mechanisms of fungi. Medical Microbiology. 4th edition.
- Ferreira, M. R. A., Santiago, R. R., Langassner, S. M. Z., Mello, J. C. P., Svidzinsk, T. I. E., & Soares, L. A. L. (2013). Antifungal activity of medicinal plants from Northeastern Brazil. J Med Plants Res, 7(40), 3008-3013.
- 18. Koroishi, A. M., Foss, S. R., Cortez, D. A., Ueda-Nakamura, T., Nakamura, C. V., & Dias

Filho, B. P. (2008). In vitro antifungal activity of extracts and neolignans from Piper regnellii against dermatophytes. *Journal of ethnopharmacology*, *117*(2), 270-277.

- 19. Manojlovic, N. T., Solujic, S., Sukdolak, S., & Milosev, M. (2005). Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina. *Fitoterapia*, *76*(2), 244-246.
- 20. Yemele Bouberte, M., Krohn, K., Hussain, H., Dongo, E., Schulz, B., & Hu, Q. (2006). Tithoniamarin and tithoniamide: a structurally unique isocoumarin dimer and a new ceramide from Tithonia diversifolia. *Natural Product Research*, *20*(9), 842-849.
- 21. Portillo, A., Vila, R., Freixa, B., Adzet, T., & Cañigueral, S. (2001). Antifungal activity of Paraguayan plants used in traditional medicine. *Journal of Ethnopharmacology*, *76*(1), 93-98.
- 22. Endo, K., Kanno, E., & Oshima, Y. (1990). Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. *Phytochemistry*, 29(3), 797-799.
- 23. Dabur, R., Chhillar, A. K., Yadav, V., Kamal, P. K., Gupta, J., & Sharma, G. L. (2005). In vitro antifungal activity of 2-(3, 4-dimethyl-2, 5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative. *Journal of medical microbiology*, *54*(6), 549-552.
- 24. Ingham, J. L., Tahara, S., & Harborne, J. B. (1983). Fungitoxic isoflavones from Lupinus albus and other Lupinus species. *Zeitschrift für Naturforschung C*, *38*(3-4), 194-200.
- 25. Bar-Nun, N., & Mayer, A. M. (1990). Cucurbitacins protect cucumber tissue against infection by Botrytis cinerea. *Phytochemistry*, 29(3), 787-791.
- 26. Kim, K. Y., Davidson, P. M., & Chung, H. J. (2001). Antibacterial activity in extracts of Camellia japonica L. petals and its application to a model food system. *Journal of Food Protection*, 64(8), 1255-1260.
- 27. Kobayashi, K., Nishino, C., Tomita, H., & Fukushima, M. (1987). Antifungal activity of pisiferic acid derivatives against the rice blast fungus. *Phytochemistry*, 26(12), 3175-3179.
- 28. Ito, T., & Kumazawa, K. (1992). Antifungal substances from mechanically damaged cherry leaves (Prumus yedoensis matsumura). *Bioscience, biotechnology, and biochemistry*, *56*(10), 1655-1655.
- 29. Meena, M. F. (1994). Antimicrobial activity of essential oils from spices. J. Food Sci. Technol., 31, 68-70.