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Abstract— In this paper, we have given several proofs inequality discovered by Turban for 

Legendre polynomials.  A single derivation and some their results were given.  We also established 

in equality for bassel function.   We illustrate and rederive the left hand inequality further more to 

establish the estimate for 0(x). 
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I. INTRODUCTION 

In a paper published some time ago, szegö [I] has given several proofs of the following – interesting 

inequality discovered by Turan for Legendre polynomials Pn(x) : 
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Szegö remarks further that inequalities analogous to (1.1) hold also for the ultraspherical, Laguerre 

and Hermite polynomials.  Thus for the ultraspherical polynomials  Pn, (x), the analogue of (1.1) 

reads:  
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Where Fn, (x)   Pn, (x)/ Pn, (1).  Subsequently, Madhava Rao and Thiruvenkatachar [2] showed 

that an elementary proof of (1.1) may be obtained by merely finding  ),(" xn  which is given by the 

elegant formula 
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Similar proofs are also set forth in [2] for the Laguerre and Hermite cases.  A simple derivation of 

(1.3) and some other results were given later by one of us [3].  Recently, Szász [4] has derived a 

sharper inequality than (1.2) for o <  < 1 : 
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Which, in the Legendre case  ( = ½) reads: 
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He has also established the following inequality for the Bassel function  Jr(x) : 
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The procedure adopted by Szász in deriving (1.4) and (1.6) is based mainly on the respective 

recurrence relations satisfied by Pn,(x) and Jν(x).  It has the merit of naturally leading to the more 

refined inequalities obtained by him, but the results themselves, when known, should be capable of 

a shorter and more direct proof.  We illustrate this in this note by utilising the results of [2] and [3] 
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to rederive the left  hand inequality in (1.5) and furthermore, to establish the following estimate for 

n(x) which is at once simpler and more precise than (1.5) : 
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Here the constant 2/ cannot be replaced by a smaller one.  We also set out certain other 

inequalities which are of interest in this context.  To this end, we consider the function. By the same 

differentiation method, we establish the inequality: 
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From which we readily deduce (1.6) by using the recursion for J (x). On the other hand, for the 

modified Bessel function I (x) we prove the inequality: 
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Finally, we derive some identities where by the inequality (1.2), the analogous inequality for the 

Laguerre polynomials  )()( xLn

   and lastly, the inequality (1.6) for Bessel functions are all rendered 

intuitive.  These identities deduced merely by means of the respective recurrence relations were 

suggested by a known identity for  Hermite polynomials mentioned by Szasz in his paper ([4], P. 

264).  Herewith we secure perhaps the simplest proofs of the inequalities in question.  

 

2. LEGENDRE POLYNOMIALS   

We begin with the left hand inequality in (1.5).  In fact, we establish a more complete inequality, 

viz., 
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Differentiating this twice and using (1.3), we obtain on simplification 
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Now we know that the roots of Pn(x) are all real and simple.  Denoting them by xyn (=1,. . ., n)  , 

we have 
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Where the Pyn are real polynomials defined by  

 Pn(x) = (x – xyn) Pvn(x),  (=1,…,n) 

Now by Cauchy’s inequality (2.3)  gives 
"

nf (x) < 0, so that 
"

nf  (x) is decreasing for all x.  Since 

fn(x) is an event function,  
'

nf  (x) is an odd function so that  
'

nf  (0) = 0  It follows that 
"

nf  (x) < O 

according as x  0, so that fn(x) is increasing x < o, decreasing x > o and has its maximum for x  o.  

Since fn(-1) = fn(+1) = 0, (2.1) follows.  

Turning to the right hand inequality in (1.7), we first recall the result which has been obtained in [3] 

by arguing with n(x) on the basis of (1.3) as we have done above with fn(x) on the basis of (2.3), 

that n(x) has its  maximum for x = 0. n(x)  n(0) for all x.   
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Now we have 

nn(0) = 2m 2

mg  (n = 2m-1 or 2m), with gm =  
m

m

2...6.4.2

)12,....(5.3.1 
 

Since  it is easily seen that m 2

mg   1/ as m  , we find that n n(0)  2/ as n .  This 

establishes the inequality in question as well as the fact that 2/ is the best possible constant thereof.  

To prove the left hand inequality in (1.7), we make use of the result derived in [3] that the function  
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has its minimum for x = 0 and is connected with n(x)  by means of the relation 

(2.5)   n (n+1) n(x) = (1-x2) Dn(x) 

Herewith we obtain the inequality: 
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 (1-x2) n(0) according as |x| 




 1. (n>1).  Since we have already seen that nn(0)  is 

a nondecreasing function of n we have   nn(0)  1(0) 
2

1
. We now get the inequality in question 

for -1  x  +1.  Note that for -1 < x < + 1, the lower bound for n(x)   furnished by  (1.7) is better 

than that given by (1.5), the former  being 0(1/n) while the latter is O(1/n2) since, for |x| < 1, 2

nP   

0 as n  . 

 

3. BESSEL FUNCTIONS  

The Bessel function J(x) of order   (- <  < + ) is defined by  
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The modified Bessel function   I (x) is then given by  
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If we write   J(x) = xg(x), then g(x) is an even entire function.  It is essential to interpret, in what 

follows J-k  J+k as (x2)  g-k  g+k with  a similar interpretation for I-k  I+k.  With this understanding 

consider the function 
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Which is continuous for all x.  Substituting for J-k  J+k  in terms of   J, 
'

J  we have 
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This shows that  (x) is increasing for x > 0 and decreasing for x > 0 Since  (=) = 0, we get  (x) 

 0, (- < x < + ) with equality only for x = 0.  This proves (1.8). 

Now the recursion formula for the J gives at once  

(3.4)  J (J + J+2) = (+1) J+1 (J-1 + J+1) 
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Hence, on using the inequality (1.8) just proved, we get  

  J 2

  – (v+1) Jv-1 Jv+1 = J 2

1   + v (J 2

1  – Jv Jv+2)  0, ν  0. 

With equality only for x = 0.  Herewith, Szász’s inequality  (1.6)  is established.  

To prove the analogous inequality (1.9) for Iv(x), we use the formula 
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Which one obtains by forming the Cauchy product of the series for I and I. The inequality to be 

proved now follows from (3.6) : 0 < C 2
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The same argument actually proves the following more general inequality: 
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In particular when  is a positive integer n, (3.7) easily gives  
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4. REMARKS ON TURÁN’s INEQUALITY FOR    pn(x) and Ln (x) = 

 We return for a moment to Turan’s inequality (1.1) for the Legendre polynomials Pn(x). For 

|x|>| the inequality is reversed as has been pointed out in [3]. : 

(4.1)  P 2

n  (x) – Pn-1 (x) Pn+1(x) < 0, n  1.  |x| > 1. 

In this case, we may prove a generalisation of (4.1) analogous to the left hand inequality in (3.7) 

viz., 

(4.2) Pn-k+1(x) Pn+k-1 (x) – Pn-k (x) Pn+k(x) < 0, 1k n, |x| > 1. 

We first observe that  

(4.3)  Pn- (x) Pn+ (x) > 0, 1    n, |x| > 1 

To prove (4.2), we use an induction on k and assume (4.2) to hold for some k (1  k  n).  From 

(4.1) for n – k and n+k respectively, we have, for |x| > 1, 

 P
2

kn   P
2

kn  
< Pn-k-1 Pn-k+1  Pn+k-1  Pn+k+1 

   < Pn-k-1 Pn-k  Pn+k  Pn+k+1 

By (4.3) and the induction hypothesis.  Hence, again by (4.3)  

  Pn-k Pn+k < Pn-k-1  Pn+k+1 

Which is (4.2) for k+1.  Since (4.2) is (4.1) for k = 1, the proof of (4.2) is complete.  For a different 

proof of (4.2), see [3]. 

For the Laguerre polynomials Ln(x), the analogue of (1.1) reads: 

(4.4)   L
2

n  (x) – Ln-1(x) Ln+1 (x)  0, n  1, -  < x < +  

This has been established in [2] for x  0.  We shall now prove that it holds also for x < 0.  

From the explicit representation of Ln(x) viz., 
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It is clear that Ln(x) is an increasing function of n for x < 0; we have, in fact, 
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Ln(x) – Ln-1(l) = 


n

o













1

1



n
 

!

)(



x
 > 0 for x < 0. 

Hence the function ln(x) = e 2

x


 Ln(x) introduced in [2] is also an increasing function of n for x < 0.  

Now for the function  

(4.6)  f(x) = l 2

n  - ln-1 ln+1 = e-x (L 2

n  – Ln-1 Ln+1) 

The following result was derived in [2] : 

(4.7)  xf’(x) = (ln+1 – ln) (ln-ln-1) 

We therefore have f ′(x) < 0 for x < 0. So that f(x) is – decreasing for x < 0.  Since f(o) = 0 it follows 

that f(x) > 0 for x < 0.  This completes the proof of (4.4). 

Since Ln(x) > 0 for x < 0 as is obvious from (4.5).   

We have Ln-k(x) Ln+k(x) > 0  for x < 0. 

Hence, by the inductive argument used above, for proving (4.2), we get  

(4.8)  Ln-k+1(x)  Ln+k-1(x) – Ln-k(x) Ln+k(x) > 0, 1 k   n,x < 0 

 

5. ULTRASPHERICAL POLYNOMIALS  

We have generalise part of the results obtained in [3] for the Legendre polynomials to derive upper 

and lower bounded for n, (x) in the case of ultraspherical polynomials.  The results  will be found 

to be analogous to the inequality (2.6).  

The ultraspherical polynomials Pn,  
(x) satisfy the relations  
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equation  

(5.2) (1-x2)P '

,n  
 (2 + 1) x P '

,n
 + n (n+2) Pn, = 0 

If we now recall the definition of n(x), and introduce the numbers  

(5.3) kn, = n (n+2) P 2

,n
 (1) = (n +2-1) (n+1) Pn-1, (1) Pn+1, (1) we have 

(5.4) kn, n(x)  n (n+2) P 2

,n
 (x) – (n+2-1) (n+1) Pn-1,(x) Pn+1, (x) 
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We now introduce the function 
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Comparison of (5.5) and (5.8) gives the relation  

(5.9)  Kn, n, (x) = (1-x2) Dn, (x)  

Let n > 1.  Taking derivatives in (5.8) and using (5.2), we have  
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Now we know that the roots of Pn,(x) are all real and simple and lie in -1 < x < + 1 symmetrically 

w.r.t. the origin.  Denoting them by n

nx  (ν =1, …, n) we have  
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Hence (5.10) may be written 
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We now take the roots )(
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nx   in the form  
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Then, in either case, we have  

(5.11)  









m

nn

n

n
m

n

n

n Px
xx

D
1

)(

,

)(

,2)(

,

)(

,

1
2)(

,

)(

,'

,

22

8
)()(

2

























 







  

Where the )(

,


nP  are real polynomials defined by  

 Pn, (x) = (x2 - )() )(
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From (5.11), we see that  

(5.12)  sgn '

,nD (x) = sgn (x) 

 Now the following facts concerning the sign of Dn,(x) at  x = 0,  1,    can be easily 

verified (-
2

1
 <   0) : 

(5.13) Dn,(0) > 0, Dn, ( ) = (sgn ). ,   Dn, ( 1) > 0.  

From (5.12) and (5.13), we arrive, by a consideration of the graph   at the following results:  

(5.14a) for - 
2

1
 <<0, Dn,(x) is increasing for x < 0, increasing for x > 0 and has its maximum for 

x = 0, resulting in the inequality : Dn,(x) > 0, -1  x  + 1 

Which cannot be reversed for |x| > 1 

(5.14b) for = 0, Dn,(x) is decreasing for x < 0, increasing for x > 0 and has its minimum for x = 0 

resulting in the – inequality Dn,(x) > 0 for all x.  

 With (5.14a, b), we get (1.2) along with the additional information that when n > 1 the 

inequality (1.2) is reversed for |x| > 1 if and only if  > 0.  Moreover, we get the following estimate 

for n,(x) in – 1  x  + 1 :  
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This follows immediately, in view of the relation (5.9), from the result obtained above that 

Dn,(x)for  |x|1 is comprised between 

 Dn,(0) = kn,  n,(0) and n,(1) = 




21

,



nk
 

 



International Journal of Engineering Technology and Management Sciences 
Website: ijetms.in Issue: 6 Volume No.6 October - November – 2022 

DOI:10.46647/ijetms.2022.v06i06.108 ISSN: 2581-4621 
 

 

@2022, IJETMS          |         Impact Factor Value: 5.672     |          Page 647 

6.  SOME IDENTITIES YIELDING PROOFS OF THE MAIN INEQUALITIES. 

 

I. ULTRASPHERICAL POLYNOMIALS.  The Fn,(x) introduced in (1.2) satisfy the recursion :  

(6.1) (n + 2)  Fn+1, - 2(n+) x Fn, + n Fn-1, = 0  

With Fo, = 1, F1, = x.  Changing n into n -1, we have  

(6.2) (n + 2 - 1) F - 2 (n +  - 1) n Fn-1, + (n-1) Fn-2, = 0, n  1. 

With F-1,= 0, Fo, = 1.  Multiplying (6.2) by Fn, , (6.1) 

By Fn-1, and   subtracting, we get the relation 

(6.3) (n+2)= n, - (n-1) n-1,= 2

,1 nF – 2x Fn-1, Fn, + 2

,nF  , n  1 

With o, = 1.  Since the right member there is evidently non-negative for |x|  1, we get the 

inequality: 

(6.4)  (n + 2) n, (x)  (n-1) n-1, (x), n  1, |x|  1. 

This immediately establishes (1.2) for  > - 
2

1
by successive  induction, and at the same time yields 

the more informative estimate: 
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Again, changing n into n + 1 in (6.3), we have  

(6.6) (n + 2 + 1) n+1, - n n,  = 2
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If we now subtract (6.3) from (6.6) and use the relations (G. (S.1)]  

(6.7) (1-x2) '
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Hence the inequality: 

(6.9) (n+2+1)  (n+1, -n,)  or  (n-1) (n, -n-1,), n  1, according as - 
2

1
 <  < 0  or  > 0.  

This gives us the additional information that for all x, n,(x)  is a non decreasing function of n when  

  0. 

 Consider next the polynomials '

,1 nP (x).  They satisfy the recursion: 

(6.10) n '
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,1 P  = 2x.  This follows from (5.7).  From 

(6.10), we can easily derive the following relation,  just as (6.3) was derived from (6.1) :  
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With D0, = 0.  We can then derive the following relation from (6.11) by using (5.7), just as (6.8) 

was derived from (6.3) by using (6.7) :  

(6.12) (n+1) Dn+1, -2(n+)Dn,  + (n+2-1) Dn-1, = 4(n+) 2

,, nP  n  0.    

With D-1 = D0, = 0. From (6.12), it is now easy to deduce the following identity we have in view : 

(6.13)  gn, Dn, (x) = ),|)(...
21

4 2

,

,,3,1
1

0

xP
n

ggg
r

n
n










 



















  

Where gn, = 
)12()...12(2

!

 n

x


  (n  1). 

Herewith, the positivity of Dn, (x) for all x is rendered intuitive when   >0.  Further more, in view 

of the relation (5.9), we recover the following complement to (1.2) for   >0.  
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(6.14) n, (x) 



 0 according as |x| 




 1.    

In particular for  = 
2

1
 (the Legendre polynomial), we have  

(6.15) n(x) = ),()12(
1

...
2

1

1

1

)1(

1 2

,

1

0

2

xP
nnn

x
r

n

























  

We may also mention, without proof, the following identity – which serves the same purpose as 

(6.13) : 

(6.16)  
















 )()()()(
22 '
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1

1
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xPxPxD
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g
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With n, =




,

^

,
),1(

)()1(

nn g

n
nnn

g



  having the same meaning as in (6.13). 

 LAGUERRE POLYNOMIALS: The analogue of Turán’s – inequality (1.1) for the Laguerre 

polynomials )()( xLn



 
reads:  

(6.17)     1,1,0)()()()( )(

1

)(

1

2)()(   nxxxx nnnn 
   

Where  .)0(/)()( )()()( 
nnn LxLx    The )(

n  defined here satisfy the recursion: 

(6.18) (+n+1) )(

1



 n   - (+2n+1 -x) )(
n +n )(

2


n  = 0 n  1 with 

1
1,1 )(

1

)(

0





 x

  
changing   

n into n-1, we have  

(6.19) ( + n)  1,)1()12( )(

1

)(

1

)(   nonxn nnn

       

with )(

1



 n  = 1, 
)(

1

  = 0 = 1x 
1

x
   Multiplying (6.19) by )(

n  ,
 

(6.19)  by   
)(

1



 n  and subtracting, we get the relation  

(6.20)    1)1()1( 2)(

1

)()(

1

)(   nnnb nnnn

  

With  )(
n  = 1.  This at once leads to the identity :  

(6.21) )(
ng )(

n (x) =  2)(

1

)(
)(

1 1









 







 v
n g

 

Where 
)(

ng  =  
!)1(

)1...()1(





n

n
 Herewith (6.17) is made evident.  In particular for  = o (the 

ordinary Laguerre polynomial Ln(x) ) we have 

(6.22) n(n+1)    2

1

1

11

2 )(. 



   


 LLLLL
n

nnn
  

It also appears from that is true for -2 <  < - 1 is well. 

III. BESSEL FUNCTIONS: It we put  =  11   JJJ x   it can rewrite the relation (3.4) already 

noted for the Bessel function J (x) in the form  

(+1)  - +1 =  2

1

2

  JJ    

This immediately leads to the relation 

)()1(

22

1

1 rr

JJ

n

n
n











 













 

Since J+n(x)  0 as n  , yields the following – series for  - 
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  =  
)()1(

22

1

1 nn

JJ
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nn
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What is easily seen to be equivalent to  

     
11

2

  JJJ   =  
)1()1(

2
2

2

1

1
2

2

2

1

2














 
nn

J
JJ

n

n 






    J-1 o 

This series representation of  is valid unless  is a negative integer, in which cane it holds with -   

in place of     since  is an even function of    for integral values of 1. 

For   0, at once disposes of Szász’s inequality (1.6). It is now all the more significant to note that 

our inequality (1.8), which asserts the positivity of  even for -1 <  < 0, is not at all placed in 

evidence by like  Szász’s inequality. 
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