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ABSTRACT 

The elliptic curve discrete logarithm problem is believed to be a secure cryptographic primitive for over 

three and a half decades. This problem was reduced to a problem in linear algebra problem by a Las 

Vegas algorithm. That algorithm was presented in IndoCrypt 2018. It was further shown that the linear 

algebra problem can be solved by zero minors. In this paper, we propose oblique elimination as a way to 

solve the elliptic curve discrete logarithm problem. This paper provides an improved version of the 

oblique elimination algorithm along with an example. This paper also provides an implementation of the 

oblique elimination algorithm. 

Keywords – Public key cryptography, ECDLP, LasVegas, Gaussian Elimination, Oblique Elimination.  

 

1. Introduction 
The integer factorization problem, the discrete logarithm problem and the elliptic curve discrete 

logarithm problem (ECDLP) form the basis of modern public-key cryptography. Transport Layer 

Security (TLS) defines a set of rules known as a protocol that governs the security of communications 

over a computer network. TLS 1.3, published in 2018, uses ECDLP as a cryptographic primitive. 

Let E be a non-singular elliptic curve over 𝔽𝑞. In this paper all curves are projective plane curves and O 

is the point at infinity. This point O also serves as the identity of the group of rational points of E. With 

a slight abuse of notation, we will denote the group of rational points of E by E as well. We will further 

assume that E is of prime order p. Since any group of prime order is cyclic, in this paper we assume that 

E is generated by P. Let Q = mP where 1 ≤ 𝑚 < 𝑝. The elliptic curve discrete logarithm problem is to 

find the integer 𝑚.  

ECDLP was proposed to be used in public-key cryptography in 1985 by Koblitz [8] and Miller [10]. 

Since then, this problem has been under attack. Many algorithms or attacks have been proposed to solve 

this problem. One notable attack was developed by Semaev [11]. This attack has been studied 

extensively. For more on this attack see [6]. 

Mahalanobis et al. [9] proposed a new attack on ECDLP. This work was followed up by Ansari et al. [2]. 

In the first paper it was shown that one can solve ECDLP using Gaussian elimination. It was then noticed 

that this Gaussian elimination is actually the same as finding a 2 × 2 zero-minor in a non-singular matrix 

over 𝔽𝑞 . In the second paper, the idea of finding a non-zero minor was formally put down [2, Section 

3]. Then a way to move from 2 × 2 minor to a minor of arbitrary size was adopted by using Schur 

complements. In this paper, we try to find a 2 × 2 zero minor using oblique elimination. 

 

2. A LasVegas algorithm to solve the elliptic curve discrete logarithm problem 

Recall that a subgroup of the group of rational points of a projective elliptic curve E over a finite field 

𝔽𝑞 of order p a prime is considered for the elliptic curve discrete logarithm problem. Let O be the point 

at infinity and the additive identity of E. We are only dealing with plane projective curves in this paper. 

The algorithm that we summarize in this section was already presented by Mahalanobis et. al. [9]. So, 

this exposition will be less formal but more intuitive. Recall that in the discrete logarithm problem there 
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are two points P and Q (= mP) in E. The problem is to compute the integer m. For sake of simplicity, we 

assume that 0 < 𝑚 < 𝑝. Our standard reference for elliptic curve discrete logarithm problem is Hoffstein 

et. al. [7, Chapter 5]. We state Theorem 5.36 (b) from that book. 

 

Theorem 1.Let D = ∑ P𝑃∈𝐸  be a divisor on E. Then D is the divisor of a rational function on E if and 

only if deg(D) = 0 and sum(D) = O. 

 

Let 𝑛′ be a positive integer and 𝑘 = 3𝑛′. Now notice that the polynomial 𝑧𝑛 intersects the elliptic curve 

E at the point of infinity 3𝑛′ times counting multiplicity. Thus, for any rational function 
𝑓

𝑧𝑛′where𝑓is a 

homogeneous projective plane curve of degree 𝑛′ intersects E at 3𝑛′ points. Those points become points 

of a divisor on E. If those set of points are 𝑃𝑖 , 1 < 𝑖 < 𝑘, from the above theorem, we see that ∑ 𝑃𝑖
𝑘
𝑖=1 =

𝑂. 

The whole algorithm is based on this simple idea. Before we state it, let us define C to be a plane 

projective curve  ∑ 𝑎𝑖,𝑗,𝑘𝑥
𝑖𝑦𝑗𝑧𝑘

𝑖+𝑗+𝑘=𝑛′  where 𝑖, 𝑗, 𝑘 ≥ 0. In the algorithm, we are looking for the 

existence of such C for some chosen distinct points {𝑃𝑖;  𝑖 = 1, 2,… , 𝑘} on E. The algorithm can be 

simply stated as follows: 

 

The only problem above is how to check if there is a curve, i.e., Step 2. Solving this makes solving the 

elliptic curve discrete logarithm problem by the above algorithm so rewarding. The above ideas that we 

explained can be put together in the form of a theorem. 

 

Theorem 2. Let E be an elliptic curve over 𝔽𝑞 and 𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑘 be points on it, where𝑘 = 3𝑛′ for 

some positive integer 𝑛′ . Then ∑ 𝑃𝑖
𝑘
𝑖=1  if and only if there is a curve C over 𝔽𝑞 of degree 𝑛′ that passes 

through these points. 

 

One way we try to solve Step 2, is to construct a matrix M. The rows of that matrix is the polynomial C 

evaluated at 𝑃𝑖 and 𝑄𝑖where𝑃𝑖 = 𝑛𝑖𝑃 and 𝑄𝑖 = 𝑛′𝑄𝑖. These are points on the elliptic curve. Then the 

kernel K′ of M contain the plane projective homogeneous curves that passes through these points {𝑃𝑖} 

and {𝑄𝑖} of the elliptic curve. 

However, the situation is hopeless from an algorithmic point of view, because most of the curves that 

one finds from this kernel 𝐾′ contain the elliptic curve E. But when one looks at the following theorem 

it is not so hopeless when dealing with the left-kernel of M. Recall the left-kernel is the kernel of the 

transpose 𝑀𝑇. 

 

Theorem 3. The following are equivalent:  

(a) The left-kernel K of M is the zero subspace.  
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(b) The kernel(right) 𝐾′ only contains curves that are a multiple of E. 

 

Now the algorithm is clear. Pick 𝑘distinct points. If the matrix M does not have a non-zero left-kernel, a 

new set of 𝑘 points are chosen and the algorithm restarts. This approach generates 𝑘 points and checks if 

there is a curve passing through them which is the same as trying to partition the unknown integer m into 

some parts. This algorithm has complexity the same as the exhaustive search. Thus, this algorithm is 

useless.  

The situation improves significantly and becomes interesting when instead of 𝑘points we choose 𝑘 + 𝑙 
points. Then the algorithm tests if there is a curve that passes through any 𝑘points out of these 𝑘 + 𝑙 
points. This approach checks if any of the 𝑘 points of 𝑘 + 𝑙points satisfy the curve C. Thus, we get to 

check 𝑙points simultaneously. It was shown that the complexity is the best when have 𝑘 = 𝑙. Henceforth, 

we assume that the left-kernel K of M is of size 𝑙 × 2𝑙. The following theorem is from [9] 

 

Theorem 4. If 𝑙 ≥ 1then the dimension of the left kernel of M is 𝑙. 
 

The following corollary from [2] supports the previous statement. 

 

Theorem 5. Assume that M has 3𝑛′ + 𝑙 rows, computed from the same number of points of the elliptic 

curve E. If there is a curve C intersecting E non-trivially in 3𝑛′ points, among 3𝑛′ + 𝑙 points, then there 

is a vector v in K with at least l zeros. Conversely, if there is a vector v in K with at least 𝑙 zeros, then 

there is a curve C passing through those 3𝑛′ points that correspond to the non-zero entries of v in M. 

 

From the above theorem we see that we are looking for a vector with 𝑙zeros in the left-kernel K. It is hard 

to imagine how to go about looking for that. In the next section we move into a more precise way of 

finding such a vector by changing the problem to a problem of finding a zero-minor in a non-singular 

matrix.  

 

3. Using minors to solve ECDLP 

Recall that the matrix K is 2𝑙 × 𝑙 matrix over 𝔽𝑞 . It is straight-forward to see that that matrix K can be 

written in this form: 

 
 

One can arrive to the above matrix from the original K by row-reduction. The right-hand side is the 

transpose of a 𝑙 × 𝑙 identity matrix over 𝔽𝑞 . We will be mostly interested in the non-identity left-sided 

𝑙 × 𝑙 part of the above matrix. We will call it A. It is safe to assume that it is a non-singular 𝑙 × 𝑙 matrix 

over 𝔽𝑞 . Furthermore, it is safe to assume that A has no zero entries, or else the discrete logarithm 

problem is solved. Thus, it is clear that every row of K has precisely 𝑙 − 1zeros. 

Let α and β be non-empty subsets of {1, 2, 3, . . ., 𝑙} of same size with the same ordering as {1, 2, 3, . . 

., 𝑙}. Let A[α|β] is the square sub-matrices of A whose elements are the intersection of rows from α and 

columns from β. The minor A[α|β] is the determinant of the sub-matrix. 
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In [2] it was shown that if det(K[α|β]) = 0 then there exists a vector with 𝑙zeros in K. A formal proof is 

given in Ansari et al. [2]. We will not repeat the proof, but the idea is easy to see through. If we have a 

zero minor in A, look at the corresponding rows of the submatrix. By row-operations we can reduce the 

last row of that sub-matrix to a zero row. Now think of the same row operations in K. It will provide 

zeros the size of the minor in the A-part of the matrix. Keeping in mind the sparse nature of the other 

part of K, this same row operations will create non-zero entries in the row, which has given the zero row 

in the submatrix with zero minor. The number of non-zero entries thus created is on the right-hand side 

of the matrix K. Because of the 1 present in that row, the number of non-zero entries thus created by the 

row-operations in K is one less than the number of zero entries created on the left-hand side of K i.e., A. 

The statement of the theorem follows: 

 

Theorem 6. If det(K[α|β]) = 0 for some non-empty subset α, β ⊆ {1, 2, 3, ..., k}, there exists a vector with 

k zero in the linear span of the rows of the left-kernel K. Furthermore, the position of zeros are positions 

β and {k + i : i ∉α}. 

The following example illustrates the above theorem. 

 
 

The matrix 𝐴1 has now five zeros in the first row. This solves the elliptic curve discrete logarithm 

problem. Thus, if there exists a zero minor in A the elliptic curve discrete logarithm problem is solved. 

Thus, we now see that the new problem that mutated from the elliptic curve discrete logarithm problem 

is to find a zero minor in a non-singular matrix.  

 

4. The Oblique Elimination method 

The oblique elimination method was first proposed by Tchuente [13] and was further improved by Gader 

[5]. The improved version was called minimal variables oblique elimination by Gader [5]. In this paper, 

oblique elimination means minimal variable oblique elimination. In this paper, we study oblique 

elimination in a slightly different way from that given in Gader [5]. In this section, we develop our 

modified version of oblique elimination. The modified oblique elimination is similar to the classical 

Gaussian elimination as both the methods reduce the columns to zero using row operations. However, 
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Gaussian elimination works top-down in a straight-line fashion. But oblique elimination works 

diagonally. Before we go any further, we need to define an oblique for a matrix. 

 

Definition 6.1 (Oblique). Let A be a 𝑙 × 𝑙 matrix. Then the 𝑖𝑡ℎ oblique of A is defined as {𝑎𝑙−𝑖+1,1, 

𝑎𝑙−𝑖+2,2, 𝑎𝑙−𝑖+3,3, . . ., 𝑎𝑙,𝑖} where 𝑖 ∈[1, l]. 

Just like Gaussian elimination, oblique elimination reduces a matrix to an upper triangular matrix. The 

oblique elimination that we implemented repeatedly reduces obliques one after the other to zero. It starts 

from the bottom left and then coming down the oblique by using row operations. 

Oblique elimination uses the element above the elements of an oblique and uses row-operation to reduce 

the oblique to zero. Note that in our case, if we have a zero above any oblique then we have the extra 

zero in a row and ECDLP is solved. The element 𝑎𝑖,𝑗 of an oblique is reduced by multiplying the 𝑖 − 1 

row of the matrix with 
−𝑎𝑖,𝑗

𝑎𝑖−1,𝑗
. Thus, 𝑖𝑡ℎ row is reduced using row operation 𝑅𝑖 + (−𝑎𝑖,𝑗/𝑎𝑖−1,𝑗)𝑅𝑖−1.Notice 

that we are going down diagonally down from left to right in the matrix. This is necessary to see that the 

zero that we made is not corrupted by other row-operations. After reducing an element in the oblique, 

we check for the new row for l-zeros. If such a row exists, the ECDLP is solved. 

 

The following illustrate the oblique elimination process. 

 
We start with the first iteration reducing element 𝑎5,1 using the element 𝑎4,1 . The second iteration 

reduces 𝑎4,1 , 𝑎5,2 using 𝑎3,1and 𝑎4,2 respectively. Similarly, the third iteration reduces the third oblique 

having elements 𝑎3,1 , 𝑎4,2 , 𝑎5,3 using elements, 𝑎2,1 , 𝑎3,2, 𝑎4,3 respectively. 

This approach of oblique elimination is more efficient than the algorithm proposed by Gader [5] where 

there are numerous matrix multiplications in place of row-operations. Algorithm 2 provides a high-level 

description of the modified oblique elimination. We used the modified oblique elimination in our 

experiment. Algorithm 2 was implemented in C++ using NTL [12] and is available online [1]. 
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5. Example of Oblique Elimination 

 

The following example demonstrates oblique elimination, as described in algorithm 2. Let A be a 5 × 5 

matrix over 𝔽43 . 

𝐴 = 𝐴0 = 

[
 
 
 
 
26 30 25 10 29
9 22 6 3 19
12 32 34 27 6
17 2 25 21 38
29 22 23 26 42]

 
 
 
 

 

 

The first oblique has element {29}. We reduce the first oblique using the row operation 𝑅5 + (−
29

17
) 𝑅4 

simplifying this expression results in 𝑅5 + 16𝑅4to get 

 

𝐴1 = 

[
 
 
 
 
26 30 25 10 29
9 22 6 3 19
12 32 34 27 6
17 2 25 21 38
0 11 36 18 15]

 
 
 
 

 

 

Now, we check if the row has l-zeros. If we find l-zeros we stop, else we continue. 

The second iteration reduces the second oblique. Second oblique of 𝐴1 has elements {17, 11}. The first 

element in this oblique is 17 and is reduced using the element above it. The following row operation is 

performed 𝑅4 + (−
17

12
) 𝑅3 simplifying this expression; we get 𝑅4 + 38𝑅3 after this row operation we 

get, 

 

𝐴2 = 

[
 
 
 
 
26 30 25 10 29
9 22 6 3 19
12 32 34 27 6
0 14 27 15 8
0 11 36 18 15]

 
 
 
 

 

 

Now, we search for l-zeros in the fourth row. If it has l-zeros we stop, otherwise we continue. The second 

oblique element is 11 and is reduced using the row-operation 𝑅5 + 33𝑅4 to get, the following and we 

check for l-zeros in the fifth row. 

𝐴3 = 

[
 
 
 
 
26 30 25 10 29
9 22 6 3 19
12 32 34 27 6
0 14 27 15 8
0 0 24 40 11]

 
 
 
 

 

 

Similarly, the third iteration reduces the third oblique {12, 14, 24} from 𝐴3 using the row operations𝑅3 +
13𝑅2, 𝑅4 + 17𝑅3 and 𝑅5 + 6𝑅4for the third, fourth and the fifth row respectively. Now, we get 
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𝐴4 = 

[
 
 
 
 
26 30 25 10 29
9 22 6 3 19
0 17 26 23 39
0 0 14 34 10
0 0 0 18 35]

 
 
 
 

 

 

We check if a row with l-zeros exists in 𝐴4 , if such a row exists, we stop, otherwise we continue. The 

last oblique can be reduced in a similar manner. 

 

6. Conclusion 

This work presents oblique elimination as an alternative to Gaussian elimination to solve ECDLP.  

Gaussian, oblique elimination both reduce an input matrix to an upper triangular matrix. Even though 

both these algorithms stop when we have an upper triangular matrix, both of the algorithms have different 

approaches. Gaussian elimination works top down whereas oblique elimination works bottom up. This 

difference enables us to have an alternative approach to understand and solve ECDLP.  In this paper we 

have developed an efficient algorithm for oblique elimination. The proposed algorithm avoids the matrix 

multiplication step which was employed in original oblique elimination method.  
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