
International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.003

ISSN: 2581-4621

1

VLSI IMPLEMENTATION OF HIGH SPEED SINGLE

PRECESSION FLOATING POINT UNIT USING

VERILOG

NARAHARI BHARGAVI 1, B NAGA RAJESH
2

1 192T1D3805 M.Tech DECS, Dr.KVSRECW, JNTUA,Affiliated, Kurnool, Andhra Pradesh India
2Assistant Professor, Dept of ECE, Dr.KVSRECW, JNTUA,Affiliated, Kurnool, Andhra Pradesh India

1naraharibhargavi555@gmail.com
2nagarajesh87@gmail.com

Abstract— Single-precision floating-point format is a

computer number format that is used to represent a wide

dynamic range of values. Floating point numbers

representation has widespread dominance over fixed point

numbers. Since the recent years, researchers are putting a lot

of efforts in interfacing complex modules which are used in

signal processing with processors for increasing the speed. In

this work implementation of a floating point arithmetic unit

which can perform addition, subtraction, multiplication, and

division functions on 32-bit operands that use the IEEE 754-

2008 standard is done using Verilog. The FPU of this work is

a single precision IEEE754 compliant integrated unit. Pre-

normalization of operands is employed for addition and

subtraction, multiplication using bit pair recoding and

division using non restoring division. It can handle not only

basic floating point operations like addition, subtraction,

multiplication and division but can also handle operations

like transcendental functions like sine, cosine and tangential

function. The logical method for Addition and Subtraction

operation is expanded in order to decrease the no. of gates

used.

 Keywords: Floating Point Unit, IEEE 754, Pre-Normalization,

Bit Pair Recoding, Non Restoring Division Arithmetic Unit.

I INTRODUCTION

Floating-point calculation is considered to be an esoteric

subject in the field of Computer Science. This is obviously

surprising, because floating-point is omnipresent in

computer systems. Floating-point (FP) data type is almost

present in every language. From PCs to supercomputers,

all have FP accelerators in them. Most compilers are called
from time to time to compile the floating-point algorithms

and virtually every OS have to respond to all FP

exceptions during operations such as overflow. Also FP

operations have a direct effect on designs as well as

designers of computer systems. So it is very important to

design an efficient FPU such that the computer system
becomes efficient. Further, FPU can be improvised by

using efficient algorithm for the basic as well as

transcendental functions, which can be handled by any

FPU, with reduced complexity of the logic used. This FPU

further can be worked upon to improvise further complex

operations-viz. exponent, etc. It can be designed so that it

can handle different data types like character, strings etc,

can serve as a backbone for designing a fault tolerant

IEEE754 compliant FPU on higher grounds and such that

pipeline can be implemented. When a CPU executes a

program that is calling for a floating-point (FP) operation,

there are three ways by which it can carry out the
operation. Firstly, it may call a floating-point unit emulator,

which is a floating-point library, using a series of simple

fixed-point arithmetic operations which can run on the

integer ALU. These emulators can save the added

hardware cost of a FPU but are significantly slow.

Secondly, it may use an add-on FPUs that are entirely

separate from the CPU, and are typically sold as an

optional add-ons which are purchased only when they are

needed to speed up math-intensive operations. Else it may

use integrated FPU present in the system. IEEE754

standard is a technical standard established by IEEE and
the most widely used standard for floating-point

computation, followed by many hardware CPU and FPU

and software implementations. Single-precision floating-

point format is a computer number format that occupies 32

bits in a computer memory and represents a wide dynamic

range of values by using a floating point. In IEEE 754-

2008, the 32-bit with base 2 format is officially referred to

as single precision or binary32. It was called single in

IEEE 754-1985. The IEEE 754 standard specifies a single

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.003

ISSN: 2581-4621

17

precision number as having sign bit which is of 1 bit

length, an exponent of width 8 bits and a significant

precision of 24 bits out of which 23 bits are explicitly

stored and 1 bit is implicit 1.

.

II PROBLEM DEFINITION

As the efficiency of the FP operation carried out by the

FPU is very much responsible for the efficiency of the

Computer System, It is very much necessary to implement

not only efficient algorithms, but to reduce the memory
requirement, reduce the clock cycles for any operations,

and to reduce the complexity of the logic used. In the path

to make a better and efficient FPU, we have tried to use

the preexisting efficient algorithms and incorporate few

changes in them or combine different positive aspects of

already existing algorithms. This has resulted in positive

and better or at least comparable results than that of

preexisting FPUs results of which has been provided in the

last chapter.

32 bits

sign exponent mantissa

1-bit 8-bits 23-bits

Figure 1 : IEEE 754 single precision format
The Floating Point Arithmetic unit consists the blocks

mentioned in below figure.

.

Figure 2: Floating Point Arithmetic Unit

The flowchart representation of Addition algorithm is

shown in figure3, we had implemented block CLA where

output carry of one block is input to the other adder block.
Subtraction can be interpreted as addition of a positive and

a negative number. So using the same algorithm as that of

addition, we can complete the subtraction operation by

taking complement of the negative number and adding 1 to

the complement. This is same as taking the 2‟s

complement of the negative number. Doing this we

interpreted the negative number as positive and carry the
addition operation.

Figure 3: Addition algorithm flow chart

The flowchart representation of Multiplication algorithm is

shown in figure4 Multiplication of negative number using

2‟s complement is more complicated than multiplication

of a positive number. This is because performing a

straightforward unsigned multiplication of the 2's

complement representations of the inputs does not give the
correct result. Multiplication can be designed in such that

it first converts all their negative inputs to positive

quantities and use the sign bit of the original inputs to

determine the sign bit of the result. But this increases the

time required to perform a multiplication, hence

decreasing the efficiency of the whole FPU. Here initially

we have used Bit Pair Recoding algorithm which increases

the efficiency of multiplication by pairing. To further

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.003

ISSN: 2581-4621

18

increase the efficiency of the algorithm and decrease the

time complexity, we have combined the Karatsuba

algorithm with the bit pair recoding algorithm

Figure 4: Multiplication algorithm flow chart
The flowchart for division algorithm is shown in figure 5.

Figure 5: Division algorithm flow chart
The division that has been used in our FPU is based on the

Non-restoring division algorithm. It is considered as a
sequence of addition or subtraction and shifting operations.

Here, correction of the quotient bit, when final remainder

and the dividend has different sign, and restoration of the

remainder are postponed to later steps of the algorithm,

unlike restoration division. In this algorithm, restoration of

the operation is totally avoided. Main advantage of this

NRD algorithm is the compatibility with the 2‟s

complement notation used for the division of negative

numbers.

III IMPLEMENTATION

The architecture and methodology implemented is shown

in figure6.

Figure 6: Block Diagram of Proposed Floating Point

Arithmetic Unit.

The FPU of a single precision floating point unit that

performs add, subtract, multiply, divide functions is shown

in figure6 Two pre-normalization units for

addition/subtraction and multiplication/division operations

has been given

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.003

ISSN: 2581-4621

19

Figure 7: Basic block diagram of the existing system
In the proposed method Post normalization unit has been

given that normalizes the mantissa part The final result can

be obtained after post-normalization. To carry out the
arithmetic operations, two IEEE-754 format single

precision operands are considered. Pre-normalization of

the operands is done. Then the selected operation is

performed followed by post-normalizing the output

obtained .Finally the exceptions occurred are detected and

handled using exceptional handling. The executed

operation depends on a three bit control signal (z) which

will determine the arithmetic operation.

IV Modules Implementation
As our FPU works with floating point numbers, the

operations, intermediate calculations and output are

conventionally in the same floating point structure. But

this invariably increases the complexity of calculation and

the number of adjustments required at each level to obtain

the correct result. Our proposal is to convert the floating

point number into a simple yet quite precise integral

representation and perform the calculations on the same,

followed by the final conversion of the output into its

expected floating point result format.

The floating point data is inputted in two parts. The first

part is a 32 bit binary value of the integer part of the
floating point operand and other is a 32 bit binary value of

fractional part of the floating point operand. This is done

because Verilog cannot deal with floatingpoint numbers.

So we need to consolidate the two parts (integral and

fractional) of the operand into a single 32 bit effective

operand. This is done by the following algorithm

explained in below.

Step 1: The sign bit (31stbit) of the input integer part

becomes the sign bit of the effective operand.

Step 2: Then the position of 1stsignificant 1 is searched in

the input integer part from RHS. This position is stored.
Step 3: All the bits from this position to the end of the

input integer part (i.e. till the 0th bit) is taken and inserted

into the effective operand from its 30th bit onward.(This

step stores the actual useful bits of the integer part as not

all the 32 bits are used to accommodate the integer part.)

Step 4: If there are still positions in the effective operand

that are not filled, then it is filled with the bits from the

input fractional part from its MSB down to the number of

bits equal to places left to be filled.(This step stores the

just requisite number of bits from the fractional part to

complete the 32 bit representation)

This can be explained with the help of an example.
Float_op_int =

32‟b00000010101000110101000011100000

Float_op_frc =

32‟b11111111111110000000000111111111

Step 1: Assign output[31] = Float_op_int[31]

Step 2: Pos of 1st 1 from LHS of Float_op_int = 25(pos

counted from RHS)

Step 3: Assign output = Float_op_int[25:0]

Step 4: Remaining bits left to be assigned inremaning =

32-26-1 = 5

Step 5: output[4:0] = Float_op_frc[31:27]
Output = 0 10101000110101000011100000 11111

 (From Integer part) (From Integer part) (From

Fraction part).

So, basically our technique gives preference to the

fractional part for smaller numbers and the integer part for

larger ones thus keeping intact the effective precision of

the floating point number.

V RESULTS

Below figures represents the individual RTL view of each

module and the simulation of three main modules.

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.003

ISSN: 2581-4621

20

Figure 8: Simulation Result for Addition

Figure 9: Simulation Result for Subtraction

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.003

ISSN: 2581-4621

21

Figure 10: Simulation Result for Multiplication.

Figure 11: Simulation Result for Division

Figure 12: Simulation Result for MAC

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.003

ISSN: 2581-4621

22

Table 1: Existing System Results.

Addition/subtraction-Device Utilization Summary

Logic Utilization Used Avai lable Utilization

Number of slice registers 224 4800 4%

Number of slice LUT's 376 2400 15%

Number of bounded IOBs 60 102 58%

Number of fully used LUT-FF

pairs

142 458 31%

Number of BUFG/BUFGCTRLs 1 16 6%

Multiplication -Device Utilization Summary

Logic Utilization Used Avai lable Utilization

Number of slice registers 427 4800 8%

Number of slice LUT's 1734 2400 72%

Number of bounded IOBs 106 102 102%

Number of fully used LUT-FF

pairs

262 1899 13%

Number of BUFG/BUFGCTRLs 2 16 12%

Table 2: Proposed System Results.

Addition/subtraction-Device Utilization Summary

Logic Utilization Used Avai lable Utilization

Number of slice registers 412 2448 16%

Number of slice LUT's 764 4896 15%

Number of bounded IOBs 97 172 56%

Number of fully used LUT-FF

pairs

89 4896 1%

Number of

BUFG/BUFGCTRLs

1 24 4%

Multiplication -Device Utilization Summary

Logic Utilization Used Avai lable Utilization

Number of slice registers 65 2448 2%

Number of slice LUT's 122 4896 2%

Number of bounded IOBs 97 172 56%

Number of Mult 18x18SIo's 4 12 33%

Number of

BUFG/BUFGCTRLs

1 24 4%

Division -Device Utilization Summary

Logic Utilization Used Avai lable Utilization

Number of slice registers 424 4800 17%

Number of slice LUT's 797 4896 16%

Number of bounded IOBs 104 102 101%

Number of fully used LUT-FF

pairs

386 4896 7%

Number of

BUFG/BUFGCTRLs

1 24 4%

Table 3: Existing Implementation

Table 4: Proposed Implementation

Unit Minimum

input arrival

time before

clock (ns)

Maximum

output

necessary

time after

the clock

(ns)

Minimum

period

necessary

(ns)

Adder/SuB 12.814 3.928 7.52

Multiplier 4.189 4.182 8.415

Mac Unit 4.266 4.04 27.568

VI CONCLUSIONS

The algorithm that we have used for the final FPU was

comparable or even better in some case than the already

existing efficient algorithms like in the case of block CLA

and CLA with reduced fan-in in terms of memory used,

delay, and device utilization. Because we have built the

FPU using possible efficient algorithms with several

changes incorporated at our ends as far as the scope

permitted, all the unit functions are unique in certain

aspects and given the right environment (in terms of higher

memory or clock speed or data width better than the FPGA

Spartan 3E synthesizing environment), these functions will

tend to show comparable efficiency and speed and if
pipelined then higher throughput may be obtained.

Minimum period: 8.415ns (Maximum Frequency:

118.842MHz), Minimum input arrival time before clock:

4.189ns, Maximum output required time after clock:

4.182ns. Tough we have succeeded to achieve small

amount of success in improvising the FPU, i.e. as per the

results of synthesis and simulation, we have proved that

our FPU have less memory requirement, less delay,

comparable clock cycle and low code complexity, but still

we have a vast amount of work that can be put on this FPU

to further improvise the efficiency of the FPU. We can

International Journal of Engineering Technology and Management Sciences
Website: ijetms.in Issue: 1 Volume No.6 January – 2022 DOI: 10.46647/ijetms.2022.v06i01.003

ISSN: 2581-4621

23

further implement operations like Exponential functions

and Logarithmic functions. Further implementing

Pipelining for the above operations can further increase the

efficiency of the FPU.

REFERENCES

1) Dr. Ravindra P. Rajput Srujana B Malkapur “Design of

Generic Floating Point Pipeline Based Arithmetic Operation

for DSP Processor” IEEE Xplore, 978-1-7281-5374-

2/20/$31.00 ©2020 IEEE, pg.no 1059-1064

2) Manisha Sangwan, A Anita Angeline,Design and

Implementation of Single Precision Pipelined Floating Point

Co-Processor, 2013 InternationalConference on Advanced

Electronic Systems (ICAES).

3) Ushasree G, R Dhanabal, Dr Sarat Kumar Sahoo, VLSI

Implementationof a HighSpeed Single Precison Floating Point

Unit using Verilog, proceedings of 2013 IEEE Conference on

Information and Communication Technologies(ICT 2013).

4) F. Mhaboobkhan, K. Kokila, R. Jothikha, and K. L.

Preethikha, “ Design of P ipelined P arity Preserving Double P

recision Reversible Float ing P oint Multiplier Using 90 nm

Technology,” 2020 6th Int. Conf. Adv. Comput. Commun.

Syst. ICACCS 2020, no. 2, pp. 739-

744,2020,doi:10.1109/ICACCS48705.2020.9074209.

5) A. Yadav and I. Chaudhary, “Design of 32 -bit Float ing Point

Unit for Advanced P rocessors,” Int. J. Eng. Res. Appl., vol.

07, no. 06, pp. 39–46, 2017, doi: 10.9790/9622-0706053946.

6) Shanthala. N1, Nayana. M, Chandrashekar.C, Dr. Siva Yella

mp al li “Basic operation performed on Arithmetic Logic Unit

(ALU) For 32-Bit Floating Point Numbers”, International

Journal of Applied Engineering Research ISSN 0973-4562

Volume 12, Number 12 (2017) pp. 3248-3252 Research india

Publications. http://www.ripublication.com

7) Naresh Grover, M,K Soni, “Design of FPGA based 32-bit

Floating Point Arithmetic Unit And verification of its VHDL

code using MATLAB”, I.J Information Engineering and

Electronics Buisiness, 2014,1,1-14 published Online February

in MECS

8) H.H. Saleh, ―H.Fused Floating-Point Arithmetic for DSP,‖

PhD dissertation,Univ. of Texas, 2008.

9) Swathi.A, G.Srinivasulu “ASIC implementation of a High

speed double Presicion(64) floating point unit using verilog”,

International journal and magazine of engineering,

technology, management and research ISSN 2348-4845

10) Prashanth B, P.Anil Kumari, G Sreenivasulu,” Design &

Implementation of Floating point ALU on a FPGA

Processor”, 2012 International Conference on Computing on

Computing, Electronics and Electrical Technologies[ICCEET]

