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Abstract— ECC is an asymmetric cryptographic system that 

provides an equivalent security to the well-known Rivest, 

Shamir and Adleman system. The basic operation in ECC is 

scalar point multiplication, where a point on the curve is 

multiplied by a scalar. A scalar point multiplication is 

performed by calculating series of point additions and point 

doublings. On the other hand GF operations consist of three 

operations addition, Multiplication and Inversion.  In this 

project implementation of the elliptic curve cryptography 

processor is proposed. Galois fields play an important role in 

cryptography. As a result of their carry free arithmetic 

property, they are suitable to be used in hardware 

implementation in ECC. Here the multiplier is implemented 

using a double and add algorithm, to obtain an efficient 

elliptic curve processor over Galois fields. 

 
 Keywords: Cryptography, Galois fields, RSA, ECC. 
 

I  INTRODUCTION 

Elliptic curves  over a field K are defined by the reduced 
Weierstrass equation in equation when the characteristic of 

the field is two or three. The set of solutions along with a 

point at infinity O defines the algebraic structure as a 

group with point addition as the basic operation 

 
The control unit consists of the main controller of the 

processor that is an FSM. It also includes two processing 

units that control the procedures for the point doubling and 

point addition. In order to process the different coordinate 

systems, the other processing units can be generated to 

support them as an add-on feature. Hence, new 
instructions need to be added to the instruction set to 

accommodate the new processing units. Different scalar 

point multiplication algorithms are supported at instruction 

level. Different projective coordinate systems and point 

addition/doubling variations are configured at the control 

level through add-on processing units. On the other hand, 

elliptic curves with different finite fields are supported as a 

pre-synthesis process. 

Cryptography is the science of information security. 

Cryptography includes techniques such as microdots, 

merging words with images and other ways to hide 

information in storage or transit. Cryptography is most 

often associated with scrambling plaintext (ordinary text, 

sometimes referred to as clear text) into cipher text (a 

process called encryption), then back again (known as 
decryption).A Cryptographic system that uses two keys – a 

public key known to everyone and a private or secret key 

known only to the recipient of the message. Individuals 

who practice this field are known as cryptographers. 

 
II  PROBLEM DEFINITION 

 The AU is the core unit of the processor that includes the 

following blocks: 1) modular addition/subtraction block; 

2) modular multiplication block; and 3) modular division 

block. Consider the equation, Q = kP, where Q, P are 

points in the elliptic curve E(a,b) and k< P. It is relatively 

easy to calculate Q given k and P , but it is relatively hard 

to determine k given Q and P. This is called discrete 

logarithmic problem for elliptic curves. The prime number 
p sets the upper limits of the equation and is used for 

modulus arithmetic. P and Q are the points on the elliptic 

curve. When using ECC, there are two types of arithmetic, 

the cartesian coordinates for resolving the elliptic curve 

and modular arithmetic used for resolving the the points 

along the coordinate system k is a very large integer 

generated at random which is multiplied with the point.. 
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Figure1: Existing System. 

 
 

Figure2: Proposed System Encryption.  

Let x, y be the private keys used by the transmitter and 

receiver respectively. The transmitter secret key x is 

multiplied with the public value of the receiver yP i.e., xyP. 

The message is encrypted using the formula M + xyp, 

where M is the plain text. 

 

 

          
 

 

Figure3:  Proposed System Encryption and Decryption. 
The receiver’s secret key y is multiplied with the public 

value of the transmitter xP i.e., yxP. The message is 

decrypted by subtracting the value yxP from the received 

message i.e., M + xyP – xyP = M. 

 
III IMPLEMENTATION 

 
The elements of a finite field can be represented in several 

different ways. For any prime power there is a single finite 

field, hence all representations of Galois Field, GF (28) are 

isomorphic. Despite this equivalence, the representation 

has an impact on the implementation complexity. Joan 

Daemen and Vincent Rijmen have chosen for the classical 

polynomial representation.A byte b, consisting of bits b7 

b6 b5 b4 b3 b2 b1 b0, is considered as a polynomial with 
coefficient in {0,1}: 

 

The addition of two finite field elements is achieved by 

adding the coefficients for corresponding powers of their 

polynomial representations, this addition being performed 

in GF (28), that is, modulo 2, so that 1 + 1 = 0. 

Consequently, addition and subtraction are both equivalent 

to an exclusive-or (XOR) operation on the bytes that 
represent field elements. Addition operations for finite 

field elements will be denoted by the symbol . 
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Finite field multiplication is more difficult than addition 

and is achieved by multiplying the polynomials for the two 

elements concerned and collecting like powers of x in the 

result. Since each polynomial can have powers of x up to 

7, the result can have powers of x up to 14 and will no 

longer fit within a single byte. 
 

IV Modules Implementation 

Implementation consists of three main modules  design as stated 
below. 

i) Main Controller 

ii) Multiplier and 

iii) Adder 

The main controller controls the functioning of the adder 
and multiplier components. The 

multiplier block is selected when the Enable line is ‘00’. 

The multiplier performs multiplication of an integer with a 

point on the elliptic curve. The multiplication is done by 

successive addition. 

The adder block is selected when the Enable line is ‘01’. 

The adder performs addition of two points on an elliptic 

curve. Addition is based on the rules of Elliptic Curve 

Arithmetic known as point addition. 

 

 

Figure 4 Main Modules in Elliptical Curve 

Cryptography 

The main controller controls the functioning of the adder 

and multiplier components. It has several internal signals, 

the functions of which are mentioned below. 

Clock : The internal clock Reset : The reset signal is used 

to bring back all the components to their initial conditions , 

when set to ‘1’. 
Mx : X -coordinate of the message to be transmitted 

My : Y - coordinate of the message to be transmitted 

aPx : X - coordinate of the quantity “xP”, (required in the 

encrypter part) 

aPy : Y - coordinate of the quantity “yP”, (required in the 

encrypter part) 

Enc_Dec : Selects encryption/decryption 

‘0’ – Encryption 

‘1’ – Decryption 

k_l : A very large integer (Private key) generated at 

random 
En : Enables Multiplier/point Adder 

‘00’ – Multiplier 

‘01’ – Point Adder 

To Multipler 

k : A very large integer generated at random which is 

multiplied with the point 

oPx : X - coordinate of the point which is to be multiplied 

with the integer 

oPy : Y - coordinate of the point which is to be multiplied 

with the integer. 

To Point Adder 
oPx : X - coordinate of the addend 

oPy : Y - coordinate of the addend 

oQx : X - coordinate of the augend 

oQy : Y - coordinate of the augend 

From Multipler 

iPx : X - coordinate of the result 

iPy : Y - coordinate of the result 

From Point Adder 

add_iPx : X - coordinate of the result 

add_iPy : Y - coordinate of the result 

Final Outputs 

kPx : X - coordinate of the product “xP” (Encryption) 
kPy : Y - coordinate of the product “yP” (Encryption) 

outx : X - coordinate of the expression “xyP+M” 

outy : Y - coordinate of the expression “xyP+M” 

V  RESULTS 

Below figures represents the individual RTL view of each 

module and the simulation of three main modules. 

 

Figure 5 RTL view of EC ALU. 
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Figure 6 RTL view of ALU. 

 

Figure 7 RTL view of ALUcontrol 

 Figure 8 RTL view of REGISTER FILE. 

 

Figure 9 RTL view of DATA MEMORY  

 Figure 10 RTL view of clock divider circuit 

 

Figure 11 Multiplication Operations used in 

Encryption 
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Figure 12 Multiplication Operations used in 

Decryption 

 

 
Figure 13 Addition Operations used in Encryption 
 

 

 
Figure 14 Addition Operations used in Decryption 
 

 
Figure 15 Main Controller outputs in  Encryption 
 
 

 
 

Figure 16 Main Controller outputs in  Decryption. 
 
Table 1: Existing System Results. 
  
operations Field Size Area Freq    

  ( M.Hz) 

Addition  224 169 174.9 

Subtraction 256 193 162.4 

Multiplication 224 357 132.8 

Inversion 224 1382 147.1 

 
Table 2: Proposed System.  
 
Operations Field Size Area Freq 

( M.Hz) 

Addition  233 154 168.6 

Subtraction 233 186 157.8 

Multiplication 233 321 127.3 

Inversion 233 1296 138.9 
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Table 3: Existing Implementation of point operations over GF(p) 

using Kintex-7 FPGA 
Operations size   Field  Area (slices) 

point doubling (PDBL) 224 2374 

point addition  (PADD) 224 2260 

 

Table 4: Proposed Implementation of point operations over 
GF(p) using Spartan2E FPGA 
 
Operations size   Field  Area (slices) 

point doubling (PDBL) 417 1536 

point addition  (PADD) 238 768 

VI CONCLUSIONS 

The achieved short critical path is due to the improved 

pipelining strategies used in Karatsuba multiplier and the 
efficient architecture of the divider. It can be noted that the 

modular multiplier is the largest block within the design 

due to the three recursively built Karatsuba blocks, which 

operate in parallel. Our modular divider performs the 

fastest timing of prime field dividers and competitive to 

binary field GF2233 modular divider. Elliptic Curve 

Cryptosystems offer security comparable to that of 

traditional asymmetric crypto systems, such as those based 

on the RSA algorithm and Digital signature algorithm with 

smaller keys and computationally more efficient 

algorithms. The ability to use smaller keys and 
computationally more efficient algorithms than traditional 

asymmetric cryptographic algorithms are two main 

reasons for using Elliptic Curve Cryptography. 
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