

Website: ijetms.in Issue:4, Volume No.4, July-2020 DOI: 10.46647/ijetms.2020.v04i04.003

15

An Efficient and Secure Multilevel Keyword Ranked
Search for Encrypted Data

Prasanth K. Baby1, Nikhil Samuel2

1Christ College of Engineering, irinjalakuda, Thrissur
2 Christ College of Engineering, irinjalakuda, Thrissur

(E-mail: 1seprasanthkbaby@gmail.com,2nikhilsamuelkf@gmail.com)

Abstract— with the growing digital communication and
networks, the data owners are motivated to outsource their
complex data to the global storage space. Greater flexibility and
economic saving are the advantages of this global storage space.
Before outsourcing the sensitive data, it has to be encrypted in
order to enforce the data privacy. In the encrypted data, search
service is important to get the necessary data. The stored data is
relatively large so it requires multiple keywords in the search
query and it will return document in the order of their relevance
to these keywords searched. Related works on searchable
encryption focus on single keyword search or Boolean keyword
search and rarely sort the result and for the multi-keyword
search coordinate matching, i.e., as many matches as possible, to
effectively capture the relevance of outsourced documents to the
query keywords and inner product similarity to evaluate such
similarity measure. In Multi-keyword Ranked Search under the
coordinate matching, the ranking helps for the efficient retrieval.
The multilevel keyword ranked search is implemented by using
the cache to reduce the search time.

 Keywords— information retrieval; keyword search; multilevel;
ranked search; searchable encryption.

I. INTRODUCTION

With the evolution of different technologies the amount of
data handled by users also increased. Hackers and malicious
programs all pose a threat to your computer and the
information it contains. Advanced data storage service for user
is data outsourcing, store complex data to global storage space
provider. The outsourced data’s are managed on remote
servers are maintained by the trusted third party outsourcing
vendors. In today’s distributed nature of data management,
gives assurances to detect and correct faulty behavior. For the
relevance of outsourced data, data owners place their sensitive
data into specialized storage area. Data owners outsource their
data without assurances of confidentiality and security.
Achieving confidentiality by encrypting the data, the major
challenge is that how to enable search and retrieval over such
encrypted data.

In standard data searching service is basically on plain text
keyword search, the solution of downloading all the data and
decrypting locally impractical. This is due to the huge amount
of band width required. For avoiding the local storage
management, the data are storing to the storage servers. Easily
searched and utilized, explores security and effective search
service for encrypted data is of paramount importance. For the
useful data retrieval in the large number of documents, request
the server to perform result relevance ranking, rather than
returning undifferentiated results. This ranked search helps to
avoid the unnecessary network traffic. For the privacy
protection, such ranking does not leak any keyword related
information.

To improving accuracy in search result and enhance the
user search experience, ranking system has to support multiple
keyword search. As a user routine practice, provide multiple
keywords as a search user interest to retrieve data, the each
keyword in search request helps to restrict the search result.
For this coordinate matching is used. This coordinate
matching is used widely in the plaintext information retrieval
(IR). Coordinate matching means as many matches as
possible.

The proposed method describes the technique for reducing
the searching time by using multilevel keyword ranked search.
This method will help the user for consuming less band width,
reduce the searching time over large encrypted document, and
also help the user for searching multi-keyword (set of
keywords). For restricted the search result, each keyword in
the search query helps. Multilevel keyword ranked search uses
coordinate matching, i.e. as many matches as possible. It is an
efficient similarity measure among multi-keyword semantics
to refine the result relevance, and has been used in plain text
information retrieval (IR). The search query consists of
keyword and the top k retrieval (top k rank). Here the search
result is on the rank ordered search. There are using several
searching technique for searching on encrypted data. For
performing better search reduced time, here cache is
implemented in multilevel keyword ranked search. This cache
helps for the better search reduction time. In the cache there
store the document and there weight.

Website: ijetms.in Issue:4, Volume No.4, July-2020 DOI: 10.46647/ijetms.2020.v04i04.003

16

The rest of the paper is organized into four sections.
Section II deals with the related works. Methodology is
discussed in section III. Section IV involves the analysis of the
work and the conclusion of the work is given in section V.

II.Related Works
This session includes the related works that are done in the

field of Searchable encryption are Single keyword Searchable
Encryption and Boolean Keyword Searchable Encryption.
Single keyword searchable encryption schemes usually build
an encrypted searchable index such that its content is
concealed to the server unless it is given appropriate trapdoors
generated via secret keys [8]. In boolean keyword searchable
encryption, conjunctive and disjunctive search are used. All
these searchable encryption are not dealing with the searching
time, considering with the basic introduction to cache is much
better for those problems.as well, for math, etc.

A. Single Keyword Searchable Encryption

Song et al [4] introduced the notation of searchable
encryption, based on symmetric key setting, where each word
in the file is encrypted independently under a special two
layered encryption construction. Thus, a searching overhead is
linear to the whole file collection length. In this method the
searching is done by, an index contains a list of keywords.
With each keyword a list of pointers to documents where the
key word appears. These keywords are words of interest that
user want to search later. One possible advantage for this
scheme is that the request could be embedded in other
retrievals so that Bob might have uncertainty about the
correlation of the search request and the retrieval request for
cipher text. The disadvantage is that user has to spend an extra
round-trip time to retrieve the documents. A general
disadvantage for index search is that whenever user changes
the documents, its index must be updated.

The limitations of [4] was the work load for each search
request proportional to the number of files in the collection.
To overcome this limitation E.J Goh [5] developed a Bloom
filter based per-file index, reducing the work load for each
search request proportional to the number of files in the
collection. A secure index is a data structure that permits a
queries with a trapdoor for a word X to test in O(1) time only
if the index contains X; The index disclose no information
about its contents without valid trapdoors, and trapdoors can
only be generated with a secret key. Secure indexes [5] are a
natural extension of the problem of constructing data
structures with privacy ensures such as those provided by
oblivious and history independent data structures. They use
Bloom filter [1] as a per document index to track words in
each document. In their scheme, a word is represented in an
index by a code word obtained by applying pseudo-random
functions twice once with the word as input and once with a
unique document identifier as input. This non-standard use of
pseudo-random functions ensures that the codewords
representing a word X are different for each document in the

set, and this technique together with blinding indexes with
random tokens, ensures that there indexes are semantic
security against adaptive chosen keyword attack (ind-cka)
secure.

Kmara et al [8] has developed a similar per-file index
scheme. In this method the files are stored in encrypted form,
later the user U wants to retrieve files containing (indexed by)
some keyword search, is not possible. There is no any straight
forward way to do keyword search unless U leak the
decryption key. Here U has to create keyword index associates
each keyword with its associated files. All keyword searches
by U are based on this index; hence their scheme does not
offer full pattern-matching generality with the real text. In
practice, this should be sufficient for most users. It is worth
noting that in this system U can have complete control over
what words are keywords and which keywords are associated
with which files, a power that can be useful for many
applications. let U use pseudo-random bits to mask a
dictionary-based keyword index for each file and send it to S
in such a way that later U can use the short seeds to help S
recover selective parts of the index, while maintaining the
remaining parts pseudo-random.

B. Boolean Keyword Searchable Encryption

In the Boolean keyword search conjunctive and disjunctive
search are used. Conjunctive keyword search returns “ all-or-
nothing . Which means that returns those documents in which
all the keywords specified by the search query appear. In
disjunctive keyword search that returns undifferentiated
results. This means it returns every document that contains a
subset of the specific keyword, even only one key word of
interest. The paper [10] gives a basic idea for privacy
preserving Multi-keyword ranked search over encrypted data
(MSRE). This is based on secure inner product computation,
and give two significantly improved MRSE schemes to
achieve various strict privacy requirements.

1) Conjunctive & Disjunctive Keyword Search: Golle et al
[11] proposed conjunctive keyword search over encrypted
data. Consider a user that stores encrypted documents on an
untrusted server. Let p be the total number of documents, and
assume there are m keyword fields associated with each
document. For an example consider, documents were emails.
They define the following 4 keyword fields: “From”, “To”,
“Date” and “Subject”. For the simplicity, they make the
following assumptions:

 Assume that the same keyword never arise in two
different keyword fields. The easiest way to satisfy this
requirement is to prepend keywords with the name of
the field they belong to. Thus for example, the keyword
“From:James” belongs to the “From” field and cannot
be confused with the keyword “To:James” that belongs
to the “To” field.

 Assume that every keyword field is defined for every
document, requirement can be easily satisfied. In our

Website: ijetms.in Issue:4, Volume No.4, July-2020 DOI: 10.46647/ijetms.2020.v04i04.003

17

email example, they may assign the key word “
Subject:NULL ” in the “Subject” field to the emails
that have no subject.

The documents are identified with the vector of m
keywords which characterize them. For (i = 1... n), they denote
the ith document by Di = (Wi;1 Wi;m), where Wi;j is the
keyword of document Di in the jth keyword field. The body of
the ith data document can be encrypted with a standard
symmetric key cipher and stored on the server next to the
vector of keywords Di. For ease of presentation they may
ignore the body of the document and concern themselves only
with the encryption of the keyword vector Di. When
discussing a capability that enables the server to verify that a
document contains a specific keyword in field j, they denote
the keyword by Wj. In this conjunctive keyword search
scheme there, it returns true if the expression ((Wi;j1 = Wj1) ˄
(Wi;j2 = Wj2) ˄˄ (Wi;j1 = Wj1)) holds and false otherwise.
In predicate encryption [7] scheme are support both
conjunctive and disjunctive search.

C. Keyword Ranked Search

In keyword ranked search Curtmola et al [12] discussed
about vector space model working and similarity based
ranking multi-keyword text search scheme. Vector space
model is well known technique which provides TF-IDF
weight rule through which we obtain accurate ranking result.
In this they gives the revised Searchable Symmetric
Encryption Scheme for, SSE-1 is efficient, it was only proven
secure against non-adaptive adversaries. A second Searchable
Symmetric Encryption SSE-2, which accomplishes semantic
security against adaptive adversaries, and Multi-user
Searchable Symmetric Encryption MSSE.

Searchable encryption permits data owner to outsource his
data in an encrypted manner while maintaining the selectively
searching capability over the encrypted data. Generally,
searchable encryption can be accomplished in its full
functionality using an oblivious RAMs [3]. Although hiding
everything during the search from a malicious server
(including access pattern), by the utilization of oblivious RAM
usually brings the cost of logarithmic number of interactions
between the user and the server for each search request. Thus,
in order to accomplish more efficient solutions, almost all the
relative works on searchable encryption writing resort to the
weakened security guarantee, i.e., revealing the access pattern
and search pattern but nothing else. Here, access pattern
alludes to the result of the search query output, i.e., which files
have been retrieved. The search pattern incorporates the
equality pattern among the two search requests (whether two
searches were performed for the same keyword), any
information derived thereafter from this statement.

Curtmola et al [12] shows that following the exactly same
security certification of existing SSE scheme, it would be very
inefficient to accomplish ranked keyword search, which
motivates us to further weaken the security guarantee of
existing SSE appropriately (only leak the relative relevance

order of the documents but not the relevance score of the
documents) and understand an “as-strong-as possible” ranked
searchable symmetric encryption..

In information retrieval (IR) [14], a ranking function is
used to evaluating relevance scores of matching files to a
given search request. The most commonly used statistical
measurement for calculating relevance score in the
information retrieval community uses the TF×IDF rule, where
term frequency (TF) is the number of times a given term or
keyword appears within a file (to measure the significance of
the term within the particular file), and inverse document
frequency (IDF) is obtained by dividing the number of files in
the whole collection of document by the number of files
containing the term (to measure the overall importance of the
term within the collection of documents). Among several
hundred variations of the TF×IDF weighting scheme, no
single combination of them out performs any of the others
universally [13]. Thus, without loss of generality, they choose
an example formula that is commonly used and widely seen in
the literature (see [6]) for the relevance score calculation is as
follows:

In [2] focus on single keyword search, this case, the IDF
factor is always constant with regard to the given searched
keyword. Thus, search results can be accurately ranked based
only on the term frequency and file length information
contained within the single file.

D. Multi-keyword Ranked Search

In Multi-keyword ranked search [10], allows multiple
keyword in the search request and return documents in the
order of their relevance to these keywords, in the ranking
principle uses coordinate matching. This means the presence
of keyword in the document or the query is shown as ‘1’ or
else ‘0’ in the data vector or the query vector. In the search
query there are more factors which make impact on the search
usability. For example, when one keyword appears in most
documents in the data set, the significance of this keyword in
the query is less than other keywords which appears in less
documents. Similarly, if one document contains a query
keyword in numerous locations, the user may prefer this to the
other document which contains the query keyword in only one
location. To capture these information in the search process,

Website: ijetms.in Issue:4, Volume No.4, July-2020 DOI: 10.46647/ijetms.2020.v04i04.003

18

we use the TF×IDF weighting rule within the vector space
model to calculate such similarity measure. Here in the
building index is a onetime process that means the index
construction is done before outsourcing the document or data,
i.e. if any modification is necessary then the index
construction has to done again for all document. This is
because that TF-IDF rule is related to whole document. In this
similarity measure introduces high computation cost during
the index construction and trapdoor generation; it captures
more related information on the content of documents and
query that returns better results for user’s interest.

E. Server Cache

Server cache is techniques used for caching objects for
reduce the server computation. This will help for the user to
access the data easily. By the help of caching improve access
speed and reduce the work load on the server. In [9] server
caching provides better performance for the auctions and also
suggests that cache at the application server can save a critical
number of accesses to a backend database and thus reduce the
server-side latency. In general, work of web caching can be
classified into browser caching, client-side proxy caching,
network caching (as in Content Delivery Networks), and
server side caching. Any time request is performed, a cache hit
occurs when keyword present, otherwise a cache miss occurs
and the information about the request has to be retrieved from
the storage. In traditional distributed file system, the server
maintains a cache of blocks that have been accessed by the
clients. The server cache is lower in the storage hierarchy than
the client caches and therefore has a lower hit rate. Studies
show that the server cache is still powerful in reducing server
disk traffic and improving the performance of the file system.

In [15], the idea of cache memories is identical to virtual
memory in that some active portion of a low-speed memory is
stored in duplicate in a higher-speed cache memory. When a
memory request is produced, the request is first presented to
the cache memory, and if the cache cannot replies, the request
is then presented to main memory. For READ operations that
cause a cache miss, the item is retrieved from main memory
and copied into the cache.

III.Procedure
In this session the multilevel keyword ranked search for

encrypted data with caching feature is described. The main
contents of this session are System model, Index construction
and Search construction.

A. System model

The proposed system consist of 3 different entities, data
user, trust server and storage server, as illustrated in figure 1.
Here the users are of two type i.e. owner of the data document
and the user who access or search these documents. The user
(data owner) has a collection of data documents F to be
outsourced to the storage server in the encrypted form E. For

enable searching capabilities over E for the effective data
utilization, the user (data owner) need to build an index I from
the documents F. The index building comes before
outsourcing the documents F. After building the index from
the data document, the user (data owner) outsources encrypted
document collection E and the index I to the storage server,
for searching the document collection. In the proposed system
it is assumed that another basic system exists for trust server
which consists of user access control and search control.

After receiving the user search request from the user (data
search user), the server is responsible to search the index I and
return the corresponding set of encrypted documents (TF-IDF
and document-id). For improving the document retrieval
accuracy, search result should be ranked according to some
ranking criteria. For reducing the communication cost, user
(data search user) sends an optional number k (retrieve top
rank up to k) along with search query and the storage server
sends back the Top k documents that are most relevant to the
search query.

B. Index Construction

In the proposed method the user U (data owner) has a
collection of data documents. In Fig.2 shows the index
construction of the proposed method. Before encrypting the
document the user need to build an index, by using the index
the user can search on the encrypted document. Each of these
indexes (user interest keywords) is referred to the documents
E. Before building up the indexes these documents need to go
through several pre-processing stages. In information retrieval
the pre-processing methods like Tokenization, Stemming
process, Stop words removal are used and the rest is
considered as the keyword. In normal cases these keywords
are taken as indexes. The pre-processing is done using Natural
Language Processing (NLP) tool-kit. For stemming process
there are several stemming algorithms each of these have their
own drawbacks and works on the basis of certain criteria or
algorithms. For avoiding these draw backs, here in the
stemming process dictionary based stemming is used.

Fig. 1: Architecture of multilevel keyword ranked search for

encrypted data.

Website: ijetms.in Issue:4, Volume No.4, July-2020 DOI: 10.46647/ijetms.2020.v04i04.003

19

Dictionary stemmers work quite differently from algorithmic
stemmers. Instead of applying a standard set of rules to each
word, they simply look up the word in the dictionary.
Theoretically, they could produce much better results than an
algorithmic stemmer. A dictionary stemmer should be able to
do the following:

 Return the correct root word for irregular forms such as
feet and mice.

 Recognize the distinction between words that are
similar but have different word senses, for example,
organ and organization.

The above features are the advantage of the dictionary
based stemming.

After the stemming process stop words removal is done.
Stop words are natural language words which have very little
meaning, such as “and”, “the”, “a”, “an” and similar words.
Stop words are filtered out before or after processing of
natural language data (text). Though stop words usually refer
to the most common words in a language, there is no single
universal list of stop words used by all natural language
processing tools. Some tools specifically avoid removing these
stop words to support phrase search.

After these processes have been completed the remaining
words are taken as keywords. In normal cases these keywords
are used as index for documents. For each documents there
may be different keywords associated with the document. For
selecting the index some criteria is used. The criteria are that
the word which has a count more than a threshold value are
selecting as the index for each document. After the index is
generated, the term frequency (TF) for that word is calculated.

The TF is calculated by the following expression:

 (1)

Inverse Document Frequency (IDF)is calculated using the
expression:

 (2)

Then the TF-IDF value is calculated for these indexes by
using the following expression:

 (3)

The above expressions are used as the basic rules applied
for how important the word is for a document. The TF-IDF is
the weighting factor which is commonly used in information
retrieval. A hashing is applied to encrypt these indexes; the
hashed indexes and the corresponding TF-IDF are stored to
the storage server. The data document are encrypted by AES
encryption, and outsourced.

C. Search Construction

The keywords are the user interest words used for
searching the documents. The generated keywords are the
indexes constructed for the encrypted document. These
keywords help the user while searching the encrypted
document. Then the user has to enter the keyword in the
search area with top k retrieval (rank order less than top k).
When the user enters the keyword, pre-processing is done for
each keyword and hashing is also done for these keyword.
Then these keywords are send to the server, and if match
found with the stored index, the corresponding TF-IDF weight
is taken. If match occurs for more documents then each
document is taken in the order of their TF-IDF weight. The
top k documents are retrieved; these retrieved documents are
relevant to the search query keyword. If a user searches a
particular keyword repeatedly over a particular threshold, then
that keyword relevance document id and TF-IDF value are
cached, so on the next search for that keyword the document
retrieval would be from the cache. By using the cache the
searching could be done easily with reduced search time.

In the single keyword search, the user enters the keyword
M and top k. The M will go through pre-processing steps and
hashing is done for encrypting the keyword. If the user
searches a particular keyword repeatedly over a threshold
value(in this case uses 3 as threshold), then that keyword
relevance document-id and TF-IDF weight are cached, the

Fig. 2: Flow Chart for User build index and storage

Website: ijetms.in Issue:4, Volume No.4, July-2020 DOI: 10.46647/ijetms.2020.v04i04.003

20

user search keyword count is less than the threshold value then
the keyword count is get incremented by 1. Consider, user
search occurred when the keyword count less than threshold
value 3, then the M relevance document-id and TF-IDF weight
are retrieved from the storage, in this case there occur cache
miss. The searched keyword count is greater than the
threshold value 3, and then the M relevance document-id and
TF-IDF weight are retrieved from the cache, the resultant
documents would be ranked according to the TF-IDF weight.
In single keyword search the TF-IDF weight of the document
is the TF-IDF of M to that document.

As the user tends to outsource a large volume of encrypted
document, search by multi-keyword is necessary which would
help to retrieve relevant documents with user interest. In case
of a multi-keyword, the user enters multi-keywords (M1, M2)
in the search area, then pre-processing is done for M1 & M2
keyword. After that each Keyword is hashed (i.e. first hashing
is perform for M1 and then for M2), then it is of the form
H(M1) and H(M2), and send to the server. In the storage server
the keyword H(M1) and H(M2) is checked with the stored hash
keywords, if match occurred then the corresponding document
TF-IDF is retrieved. Finally, the checking is done as:

 First check H(M1) in document D1, if match found then
the TF-IDF for that word in D1 is taken.

 Then check H(M2) in document D1, if again match
found then the TF-IDF for that word in D1 is taken.

 Finally, the TF-IDF obtained for different keywords of
single document D1 is added up and the result obtained
is the TF-IDF of that document, as given below:

 (4)

This (TF×IDF)(D1) is the weight for the document D1 in
case of multi-keywords, similarly for the remaining
documents. By using this calculated TF-IDF weights the
ranking is done for the documents. The k value is used for
retrieving the top k no of documents which are relevant to the
keywords. The result is obtained for the keywords M1 and M2.
If the user needs to search for multi-keywords (M1,
M2,.....Mn), there are n keywords for searching, then a
keyword search in the document D1 for M1, M2,.....Mn is done,
there after similar for keyword search is also done for the
remaining documents. The resultant TF-IDF of document D1
is the sum of TF-IDF of each keyword M1, M2 ...Mn for D1. In
general, there are n keywords and h documents of the form:-

 (5)

The equation (5) can be summarized as follows:-

 (6)

In figure 3 shows how the proposed system work with
multilevel search and reduce the search time, multilevel
keyword ranked search would help the users to cache the
results. Here the cache is applied for each keyword. Each
keyword is associated with the TF-IDF weight and document-
id of the corresponding document. While performing the
search operation again with the same keywords, the TF-IDF
weight and document-id of the corresponding keyword would
be retrieved from the cache, so that search time complexity
could be reduced. The proposed method would be an efficient
method to overcome the problem of search time.

IV.Results And Discussion
This session deals with the results and analysis of the

proposed method. The analysis focuses on the reduced search
time for document retrieval using search keywords. The
proposed method with cache is compared with the method
without cache. Based on the analysis, the results are presented
below.

Fig. 3: Flow Chart for User Search

TABLE I: Effect of Search Time with Cache Vs
without Cache

Query size
(No of
keyword
searched)

Search Time
(Milliseconds)
without cache

Search Time
(Milliseconds)
with cache

7 57 2

8 69 2

9 73 2

10 79 2

11 84 2

Website: ijetms.in Issue:4, Volume No.4, July-2020 DOI: 10.46647/ijetms.2020.v04i04.003

21

The dataset consist of 67 files and each containing
different no of keywords. The TF-IDF calculation is a onetime
process, if modification is done to any of the files then
keyword construction and recalculation of the TF-IDF Value
is needed. The table I shows the search time with the effect of
cache and without effect of cache. The caching is done for the
keywords related with the document id and their TF-IDF
weights. The analysis is done with the query size (No of
keywords searched) of 7, 8, 9, 10, 11 and their related search
time with cache and without cache is obtained. Consider that,
when search occurs with query size 7 (i.e. no of keywords
searched) the corresponding results are, with cache is 2
millisecond and without cache is 57 millisecond. From this it
is seen that the search time could be reduced by using the
multilevel cache method. The retrieved result is the relevant
documents in the ranked order; ranking is done with the
related keyword’s TFIDF weights.

Similarly, for the remaining query size 8, 9, 10, 11 (i.e. No
of keywords searched) their related search time with cache is 2
millisecond and without cache is 69, 73, 79, 84 respectively as
shown in the table I. From the table it is clear that the search
time without cache is higher than search time with cache. The
proposed method with cache gives better search time as
compared to that method without cache. The table II shows,
the comparison between p + q keywords search time with
cache and without cache. In this p and q are no of keywords
with cache and without cache respectively, i.e. p keywords
document id and their TF-IDF weight is in the cache, and q
keywords TF-IDF weight and document id are taken from the
storage. In this analysis, the value of p is made constant i.e. 7
keywords and the value q is varied from 1 to 4.

The table II shows p + q keywords in the query search, in
this p =7 and q =1.In case without cache, all the 8 keyword’s
TF-IDF weight and document-id are to be searched from the

storage server with search time 70 milliseconds but by using
cache, 7 keyword’s TF-IDF weight and document-id is taken
from the cache and 1 keyword’s TF-IDF weight and
document-id is taken from the storage server reducing the
search time to 11 milliseconds. Now from the analysis it is
clear that the search time in the proposed method is lower than
the search time in the method without cache.

Similarly for the remaining p + q keywords, p =7 is made
constant and q is given values 2, 3, 4 in this analysis and the
search time without cache is shown as 84, 116, 129
millisecond and with cache is shown as 22, 25, 37 millisecond
respectively. From these values it is clearly seen that with
cache the search time can be reduced to a great extent.

V. Conclusion
In the proposed method of multilevel keyword ranked

search, the problem of increased search time have been
reduced. The coordinate matching i.e. as many matches as
possible to effectively capture the relevance of outsourced
documents to the query keywords and use inner product
similarity to quantitatively evaluate such similar measures was
used. Along with the coordinate matching the ranking
mechanism by TF-IDF weight rule was used for the relevance
of the data documents and also the cache was included in the
proposed method. The TF-IDF weights and the document ids
of the keywords that are frequently used are stored in the
cache. Then after the keywords TF-IFD weight and document
id is taken directly from the cache which reduces the search
time rather than from retrieving the information from the
storage. The analysis was done based on the performance with
and without cache resulting in reduced search time in case of
the method with cache.

As future work, enhancements using a clustering based
search method, to reduce the search time and by adding
multiple levels at multiple locations, to gain more efficiency
could be added along with the proposed method.

References
[1] Steven M. and William R. Cheswick, “Privacy-Enhanced

Searches Using Encrypted Bloom Filters”, Cryptology ePrint
Archive, Report 2004/022, http://eprint.iacr.org, 2004.

[2] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure Ranked
Keyword Search over Encrypted Cloud Data””, Proc. IEEE 30th
Intl Conf. Distributed Computing Systems, 2010,

[3] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling Secure and
Efficient Ranked Keyword Search over Outsourced Cloud
Data”, IEEE Trans. Parallel and Distributed Systems, vol- 23(8),
Aug 2012, pp. 1467–1479.

[4] D. Song, D. Wagner, and A. Perrig, “Practical Techniques for
Searches on Encrypted Data”, Proc. IEEE Symp. Security and
Privacy, 2000,

TABLE II: Effect of Search Time with p keywords
Cache and q keywords not Cache Vs without Cache for p+q
keyword Search.

Query
size (No
of
keywor
d
searche
d)

No of
keywords
cached (p)

No of
keywords
not
cached
(q)

Search
Time
(Millisecon
ds) without
cache

Search
Time
(Millise
conds)
with
cache

8 7 1 70 11

9 7 2 84 22

10 7 3 116 25

11 7 4 129 37

Website: ijetms.in Issue:4, Volume No.4, July-2020 DOI: 10.46647/ijetms.2020.v04i04.003

22

[5] E.J.Goh, “Secure Indexes”, IEEE Transactions on Information
Theory, Cryptology ePrint Archive,
http://eprint.iacr.org/2003/216. 2003.

[6] I.H. Witten, A. Moffat, and T.C. Bell. , “Managing Gigabytes:
Compressing and Indexing Documents and Images”, Morgan
Kaufmann, May, 1999,

[7] J. Katz, A. Sahai, and B. Waters, “Predicate Encryption
Supporting Disjunctions, Polynomial Equations, and Inner
Products”,Proc. 27th Ann. Intl Conf. Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2008.

[8] S. Kamara and K. Lauter, “Cryptographic Cloud Storage”, Proc.
14th Intl Conf. Financial Cryptography and Data Security, Jan,
2010,

[9] Daniel A. Menasc and Vasudeva Akula,“Improving the
Performance of Online Auctions Through Server-side Activity
Based Caching”, http://cs.gmu.edu/ menasce/papers/menasce-
akula-wwwj.pdf

[10] N. Cao, C.Wang, M. Li, K. Ren, and W. Lou, “Privacy-
Preserving Multi-Keyword Ranked Search over Encrypted
Cloud Data”, IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS,Vol-25, NO.1,JANUARY,2014.

[11] P. Golle, J. Staddon, and B.Waters,“Secure Conjunctive
Keyword Search over Encrypted Data”, Proc. Applied
Cryptography and Network Security, 2004,pp:-31-45,

[12] R. Curtmola, J.A. Garay, S. Kamara, and R. Ostrovsky,
“Searchable Symmetric Encryption: Improved Definitions and
Efficient Constructions, Proc. 13th ACM Conf. Computer and
Comm. Security, 2006,

[13] J. Zobel and A. Moffat, “Exploring the Similarity Space”,
SIGIR Forum, 32(1), 1998, pp:-18-34.

[14] Singhal (2001). Modern information retrieval: A brief
overview,. IEEE Data Eng, 24, 35–43.

[15] Hongqing Liu, Stacy Weng, and Wei Sun, “Introduction of
Cache Memory”, 2001 https://www.cs.umd.edu/class/fall-
2001/cmsc411/proj01/cache/cache.pdf

